
This project has received funding from the European Union’ s Horizon 2020 research and innovation programme under grant agreement No 691883

Deliverable 6.7: Integration and Validation report

WP6, Task 6.7

Date of document

31/01/2018 (M24)

Deliverable Version: D6.7, V1.0

Dissemination Level: PU1

Author(s): Jose Luis Izkara and Alberto Armijo (TEC), Felix Larrinaga
(MU), Nati Herrasti (ETIC), Mauri Benedito (GIS), Alvaro García
(ACC), Andrius Grigas (VG), Jose Luis Hernandez (CAR),
Urmas Eero (ET)

1 PU = Public

PP = Restricted to other programme participants (including the Commission Services)

RE = Restricted to a group specified by the consortium (including the Commission Services)

CO = Confidential, only for members of the consortium (including the Commission Services)

Ref. Ares(2018)568888 - 31/01/2018

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 2 / 128

Document History

Project Acronym SmartEnCity

Project Title Towards Smart Zero CO2 Cities across Europe

Project Coordinator Francisco Rodriguez

Tecnalia

francisco.rodriguez@tecnalia.com

Project Duration 1st February 2016 - 31st July 2021 (66 months)

Deliverable No. D6.7 Integration and Validation report

Diss. Level Public

Deliverable Lead TEC

Status Working

 Verified by other WPs

X Final version

Due date of deliverable 31/01/2018

Actual submission date 31/01/2018

Work Package WP 6 - City Information Open Platform (CIOP)

WP Lead MON

Contributing
beneficiary(ies)

TEC, MON, ETIC, ACC, CAR, GIS, VG, ET

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 3 / 128

Date Version Person/Partner Comments

26/09/2017 0.1 Jose Luis Izkara and Alberto
Armijo (TEC)

First Draft for the ToC

16/10/2017 0.2 Jose Luis Izkara and Alberto
Armijo (TEC)

Review of the ToC and
completion of the Section 4
(Integration and Validation) and
section 5 (Evaluation and
Validation in SmartEnCity)

24/10/2017 0.3 Jose Luis Izkara and Alberto
Armijo (TEC)

Felix Larrinaga (MU)

Nati Herrasti (ETIC)

Josu Rollón (MTEL)

Mauri Benedito (GIS)

Alvaro García (ACC)

Andrius Grigas (VG)

End-points identification and
partial description

01/12/2017 0.4 Jose Luis Izkara and Alberto
Armijo (TEC)

Felix Larrinaga (MU)

Nati Herrasti (ETIC)

Josu Rollón (MTEL)

Mauri Benedito (GIS)

Alvaro García (ACC)

Andrius Grigas (VG)

Jose Luis Hernandez (CAR)

Urmas Eero (ET)

Final Identification and
description of End-points

Added new section identification
in Added-value services testing

Added new section identification
in Monitoring Testing

Description of first deployment
of test

Identification of Energy
Efficiency Test Scenario

04/12/2017 0.5 Jose Luis Izkara and Alberto
Armijo (TEC)

Completion of section 1.1 and
1.3

15/12/2017 0.6 Jose Luis Izkara and Alberto
Armijo (TEC)

Nati Herrasti (ETIC)

Mauri Benedito (GIS)

Alvaro García (ACC)

Andrius Grigas (VG)

Urmas Eero (ET)

New section introducing the
description of end-points in the
framework of the CIOP
architecture (Section 6.1)

Final deployment of most of the
Unit Tests

Completion of the identification
in Monitoring Testing

Detailed description of
Integration test 1

12/01/2018 0.7 Jose Luis Izkara and Alberto
Armijo (TEC)

Nati Herrasti (ETIC)

Mauri Benedito (GIS)

Alvaro García (ACC)

New section describing the
global access system.

Completion of the deployment of
Integration test 1

Completion of the deployment of
Integration test 2

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 4 / 128

Copyright notice

© 2016-2021SmartEnCity Consortium Partners. All rights reserved. All contents are reserved by default and may

not be disclosed to third parties without the written consent of the SmartEnCity partners, except as mandated by

the European Commission contract, for reviewing and dissemination purposes.

All trademarks and other rights on third party products mentioned in this document are acknowledged and owned

by the respective holders. The information contained in this document represents the views of SmartEnCity

members as of the date they are published. The SmartEnCity consortium does not guarantee that any information

contained herein is error-free, or up to date, nor makes warranties, express, implied, or statutory, by publishing

this document.

Jose Luis Hernandez (CAR)

Andrius Grigas (VG)

Urmas Eero (ET)

Completion of the deployment of
Integration test 3

Complete Reports on test
(Section 7)

Section of added-value services
testing has been completed

Final conclusions

Document consolidation and
format

29/01/2018 1.0 Jose Luis Izkara and Alberto
Armijo (TEC)

Andrius Grigas (VG)

Mauri Benedito (GIS)

Tõnis Eelma (ISE)

Detailed Integration, qualitative
assessment and corrective
measures for Integration test 3.

Final updates according to
reviewers’ comments.

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 5 / 128

Table of content:

0 Publishable Summary ...12

1 Introduction ...14

1.1 Purpose and target group ...14

1.2 Contributions of partners ..15

1.3 Relation to other activities in the project ...15

2 Objectives ...17

2.1 Objectives of WP ..17

2.2 Objectives of Task 6.7 ..17

3 Integration and Validation ..19

3.1 Introduction ..19

3.2 Integration and Validation Methodology..21

3.2.1 Requirement Analysis ...22

3.2.2 Test Planning ..23

3.2.3 Test Case Development ..23

3.2.4 Test Environment setup ..23

3.2.5 Test Execution ..24

3.2.6 Test Cycle Closure ..24

3.3 Test Standardization and Tools ..29

3.3.1 Test Standardization ...29

3.3.2 Testing Tools ..29

3.4 Testing templates ...32

3.4.1 Test scenarios and test cases ...32

3.4.2 Test summary report template ...33

3.4.3 Correction measures report template ..33

4 Integration and Validation in SmartEnCity ...35

4.1 Performance Tests ...35

4.2 Functional Tests ...37

4.3 Unit Testing ..39

4.3.1 Repositories Testing ...39

4.3.2 Processes Testing ...39

4.3.3 Interoperability Mechanisms Testing ...40

4.3.4 Intelligent Services Testing ...40

4.4 Integration Testing ...40

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 6 / 128

4.5 Added-value Services Testing ..42

4.6 Monitoring Testing ..49

4.6.1 Introduction ...49

4.6.2 Monitoring Topics ..49

4.6.3 Monitoring Tools ..51

4.7 Global Access System ...51

5 Identification of end-point elements to Test ...54

5.1 Introduction ..54

5.2 Data Acquisition about Energy ...55

5.3 ETL Processes (Energy Vertical Repository) ..57

5.4 API for Energy Services ...58

5.5 Energy Application ...59

5.6 ETL Processes (Mobility Repository) ..59

5.7 API for Mobility Services ..60

5.8 API for Citizen Engagement Services ...61

5.9 ETL Processes (Historical Repository) ...62

5.10 ETL Processes (Structural Repository) ..63

5.11 GIS Repo Services ...63

5.12 GIS Structural Repo Services ...65

5.13 API for KPIs ...66

5.14 Services for Integrating Open Data ..68

6 Deployment of tests ...70

6.1 Unit Tests ...70

6.1.1 Data Acquisition about Energy ..70

6.1.2 ETL Processes (Energy Vertical Repository) ...72

6.1.3 API for Energy Services ..75

6.1.4 Energy Application ..78

6.1.5 ETL Processes (Mobility Repository) ...80

6.1.6 API for Mobility Services ...82

6.1.7 API for Citizen Engagement Services ..85

6.1.8 ETL Processes (Historical Repository) ..87

6.1.9 ETL Processes (Structural Repository) ...91

6.1.10 GIS Repo Services ..92

6.1.11 GIS Structural Repo Services ..94

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 7 / 128

6.1.12 API for KPIs ..98

6.1.13 Services for Integrating Open Data ... 101

6.2 Integration Tests .. 103

6.2.1 Integration test 1: Energy Efficiency Test Scenario 103

6.2.2 Integration test 2: District Heating (Fortum) ... 114

6.2.3 Integration test 3: Electricity Production from Solar Panels 115

7 Report on tests & Correction measures ... 121

7.1 Unit Tests ... 121

7.2 Integration Tests .. 123

8 Conclusions, deviations and outputs for other WPs ... 126

9 References .. 128

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 8 / 128

Table of Tables:

Table 1: Abbreviations and Acronyms ...11

Table 2 Contribution of partners ...15

Table 3 Relation to other activities in the project ..16

Table 4 Software Testing Life Cycle ..29

Table 5 Template for test scenarios ..32

Table 6 Template for test cases ..33

Table 7 Template for reporting on tests..33

Table 8 Template for correction measures ...34

Table 9 Battery of test to be implemented for performance evaluation36

Table 10 Template for performance test ...37

Table 11 Template for functional tests in API testing ..38

Table 12 Template for functional tests in GUI testing ..38

Table 13 Template for Integration Tests ...42

Table 14 List of added value services ...46

Table 15 Functional tests plan for added value services ..48

Table 16 Integration test plan for added value services ..49

Table 17 List of end-point to test ...55

Table 18 Description of Data Acquisition about Energy ..56

Table 19 Description of ETL Processes (Energy Vertical Repository)58

Table 20 Description of API for Energy Services ...59

Table 21 Description of Energy Application ...59

Table 22 Description of ETL Processes (Mobility Repository) ..60

Table 23 Description of API for Mobility Services ..61

Table 24 Description of API for Citizen Engagement Services62

Table 25 Description of ETL Processes (Historical Repository)63

Table 26 Description of ETL Processes (Structural Repository)63

Table 27 Description of GIS Repo Services ..65

Table 28 Description of GIS Structural Repo Services ..66

Table 29 Description of API for KPIs ...68

Table 30 Description of Services for Integrating Open Data ...69

Table 31 Unit tests summary report .. 123

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 9 / 128

Table 32 Integration tests summary report .. 125

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 10 / 128

Table of Figures:

Figure 1 V model of testing..21

Figure 2 Software Testing Life Cycle ..22

Figure 3 Unit Test and Integration Test ..35

Figure 4 Global Access System End Points area ...52

Figure 5 Global Access System KPIs area ...52

Figure 6 Global Access System Administrator area ..53

Figure 7 Smart Cities General Architecture ..54

Figure 8 Historical repository HDFS storing script ..89

Figure 9 SQL Dump input file (current.sql) ...90

Figure 10 CIOP Hadoop folders ...90

Figure 11 Energy Efficiency test scenario .. 105

Figure 12 Hadoop backup folder ... 107

Figure 13 GIS Interface of the Energy Application ... 114

Figure 14 Building Report in the Energy Application .. 114

Figure 15 Electricity Production from Solar Panels test scenario 117

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 11 / 128

Abbreviations and Acronyms

Table 1: Abbreviations and Acronyms

Abbreviation/Acronym Description

API Application Programming Interface

BVT Build Verification Test

CIOP City Information Open Platform

CityGML City Geography Mark-up Language

CRUD Create, Read, Update and Delete

ESCO Energy Savings Company

EC European Commission

ETL Extract, Transform and Load

EU European Union

EV Electric Vehicle

GIS Geographic Information Systems

GUI Graphical User Interface

HDFS Hadoop Distributed File System

HMI Human Machine Interface

ICT Information and Communication Technologies

IoT Internet of Things

ISO International Organization for Standardization

JSON JavaScript Object Notation

KPI Key Performance Indicator

MySQL My Structured Query Language

NoSQL No Structured Query Language

OGC Open Geospatial Consortium

OS Operating System

OSM OpenStreetMap

QA Quality Assurance

RA Reference Architecture

REST Representational State Transfer

RTM Requirement Traceability Matrix

SCADA Supervisory Control And Data Acquisition

SDLC Software Development Life Cycle

SmartEnCity Towards Smart Zero CO2 Cities across Europe

STLC Software Testing Life Cycle

SQL Structured Query Language

WCS Web Coverage Service

WP Work Package

WMS Web Map Service

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 12 / 128

0 Publishable Summary

SmartEnCity focuses on the development of a highly adaptable and replicable systemic

approach towards urban transformation into sustainable, smart and resource efficient urban

environments in Europe, through the planning and implementation of measures aimed at

improving energy efficiency in the main consuming sectors in cities and increasing the supply

of renewable energy. This approach will be defined in detail, and subsequently laid out and

implemented in the three Lighthouse demonstrators (Vitoria-Gasteiz in Spain, Tartu in

Estonia and Sonderborg in Denmark), to be further refined and replicated with the

development of Integrated Urban Plans (IUPs) in all participant (both Lighthouse and

Follower) Cities.

WP6 aims to devise a common ICT platform that will be the reference for the deployment of

the “City Information Open Platform” (CIOP) in each one of the pilot lighthouse projects. The

platform will provide a standardized data model to accommodate data from each pilot and

will also define standardized services and modules for data consumers, especially relevant

are those related to the monitoring of SmartEnCity KPIs, those requested by the EC in the

call and those identified as ICT solutions for the project.

Deliverable D6.7 presents the results of Task 6.7 “Integration and Validation” within WP6 of

the SmartEnCity project. The main objective for this task is the integration and validation of

the different modules of the ICT platform. The task included the following activities: (1)

selection of integrity and validation tests; (2) deployment of tests; (3) correction measures

and; (4) report on test.

This document presents first a generic methodological approach applicable for the

integration and validation of smart city projects. As the CIOP is software asset, the approach

takes the basis from the testing and quality assurance of the software development. The

selected approach is based on the V model of testing. Several standards, tools and

templates have been defined and are available for the implementation of the selected

approach to SmartEnCity project. Next, this testing methodology is framed to the specific

needs of SmartEnCity to validate the demonstrators to be developed in the project. A check

plan for the validation of the different modules of the ICT platform developed in the previous

tasks is deeply described, including performance and functional tests, as well as unit tests

and integration test. Specific templates are also provided for the deployment of each kind of

test. The test plan for the added value services envisaged to be developed for the

lighthouses implementations is also detailed, as well as the principles and the main aspects

to consider during the operation phase for the monitoring testing. The global user

authentication system is described as a tool for integration and evaluation in the SmartEnCity

platform. Based on the reference architecture proposed for SmartEnCity, a set of end-points

developed in previous tasks of the WP6 have been described in detail and later deployed for

testing. The list of end-points tested is representative of each of the CIOP layers defined in

the reference architecture and the different types of end-points developed. In the testing

deployment, first the end-points have been tested individually following the templates and

guidelines described in the methodological approach. Then three different integration

scenarios have been defined, including some of the end-points developed. Selected

integration scenarios are complementary in terms of domain and lighthouse implementation.

The integration tests have been also developed following the defined approach. This report

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 13 / 128

finally presents the results of the tests, corrective measures and conclusions identified after

the work done for the completion of the Task 6.7.

The integration and validation report represents the formal representation of the results of

tests for modules of the SmartEnCity CIOP developed in WP6, as well as the specification

for integration and validation of the platform and added value services to be then

implemented tailored to the specific constraints and expectations of each lighthouse city

(WP3, WP4 and WP5).

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 14 / 128

1 Introduction

1.1 Purpose and target group

This public report constitutes deliverable D6.7 Integration and Validation report due on M24

of the SmartEnCity project. The main objective of task T6.7 Integration and Validation, whose

results are reported in this deliverable, is to test and assess the different modules of the ICT

platform, following the Reference Architecture principles ideated and developed in WP6 City

Information Open Platform (CIOP). The main activities carried out in this task are listed here:

• An integration and validation methodology was provided as a generic software testing

framework that covers the best practices in Software Testing Life Cycle (STLC). Some

test standards and testing tools widely accepted by developers and testers were

introduced to support the STLC methodology. In order to allow the testing results to

follow a common approach, some testing templates were introduced

• Based on the STLC methodology, testing tools and test templates, the integration and

validation plan for SmartEnCity project modules was presented as a particularization of

the STLC methodology

• Next, the end-points to be tested were identified by the developers of the CIOP specific

modules and the tests were deployed and reported following the testing templates, which

were used to document unit tests and integration tests

• Furthermore, the correction measures derived from the test results were applied and

documented accordingly

This report is structured into the following sections:

This section 1 presents the purpose of the document, the main contribution of each partner

and the relationship of the current document with other WP and deliverables.

Section 2 presents the objectives of WP6 and the objectives of the task T6.7 in relation to the

work package.

Section 3 identifies the integration and validation methodology as a generic software testing

framework that covers the best practices in Software Testing Life Cycle (STLC).

Section 4 specifies the diverse types of tests that were identified following the STLC

methodology. These tests were performed during the test deployment in section 7.

Section 5 identifies the specific end-point elements to be tested in the City Information Open

Platform (CIOP) according to the structure of the Reference Architecture.

Section 6 presents the deployment of tests, according to the tests presented in section 4.

Section 7 presents a summary of the report on tests in a structured way and outlines a

summary of correction measures derived from the report on tests

Section 8 presents the conclusions, deviations found and the inputs for other work packages.

Main target group of the information, the test reports and the conclusions collected in this

deliverable are the partners in charge of the development of the CIOP platform at use case

level. That is at city level in Work Packages 3, 4 and 5. Follower cities could also take

advantages of the findings and results produced in this task.

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 15 / 128

1.2 Contributions of partners

The following Table 2 depicts the main contributions from participant partners in the

development of this deliverable.

Participant

short name

Contributions

TEC Task Leader. Responsible of the content of the deliverable.

Main contributor of Sections 1, 2, 3, 7 and 8, and contributor of Section 4 (Performance

tests, Functional tests, Unit testing and Integration testing), Section 5 (Introduction and GIS

structural repo services) and Section 6 (GIS structural repo services and Integration test 1).

ET Contributor of Section 4 (Monitoring testing) and Section 6 (Integration test 2)

MON Contributor of Section 5 (Data acquisition about Energy, ETL Processes- Energy Vertical

Repo, ETL Processes – Historical Repo, ETL Processes – Structural Repo) and Section 6

(Data acquisition about Energy, ETL Processes- Energy Vertical Repo, ETL Processes –

Historical Repo, ETL Processes – Structural Repo and Integration test 1)

ETIC Contributor of Section 5 (API for Energy Services, ETL Processes – Mobility Repo, API for
Mobility Services, API for Citizen Engagement Services) and Section 6 (API for Energy
Services, ETL Processes – Mobility Repo, API for Mobility Services, API for Citizen
Engagement Services and Integration test 1)

CAR Contributor of Section 4 (Added-value services testing).

ACC Contributor of Section 4 (Global Access System).

GIS Contributor of Section 5 (Energy Application and GIS repo services) and Section 6 (Energy

Application, GIS repo services and Integration test 1)

VG Contributor of Section 5 (API for KPIs and Services for integrating open data) and Section 6

(API for KPIs, Services for integrating open data and Integration test 3)

Table 2 Contribution of partners

1.3 Relation to other activities in the project

The following Table 3 depicts the main relationship of this deliverable to other activities (or

deliverables) developed within the SmartEnCity project and that should be considered along

with this document for further understanding of its contents.

Deliverable

Number

Contributions

D6.2 This demonstrator presents the Reference Architecture for SmartEnCity

D6.3 This demonstrator presents the Reference Architecture for SmartEnCity completed

with the Data Models

D6.4 This demonstrator presents the Reference Architecture for SmartEnCity completed

with the Interoperability Mechanisms

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 16 / 128

WP3, WP4 and

WP5

The implementation in each lighthouse will agree to the Reference Architecture and

the layers and modules defined in it. The integration and validation of each

implementation will be performed there.

Table 3 Relation to other activities in the project

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 17 / 128

2 Objectives

2.1 Objectives of WP

As stated in the Grant Agreement, the overall objective in this work package is to devise a

common ICT platform that will be the reference for the deployment of the “City Information

Open Platform” in each one of the pilot lighthouse projects. The detailed objectives of the

work package are:

• Define the specifications of the platform. Functional and non-functional requirements

must be identified considering the overall expected performance of the platform.

(Done in SmartEnCityD6.1, 2016).

• Define and provide the infrastructure or technological architecture that will enable

gathering information from the different verticals (building retrofitting, district heating,

smart grid, smart mobility) and offer data to the consumer applications (web

applications, reports, control algorithms etc.) This is the main objective of this

task/deliverable (Done in SmartEnCityD6.2, 2017).

• Provide a data model that will accommodate data from different sources such as

electric vehicle charging points, appliances and lighting systems in dwellings, district

heating Supervisory Control And Data Acquisition (SCADA) systems, data collected

by utilities with smart meters, data from building elements (lifts, lighting systems…).

(Done in SmartEnCityD6.3, 2017)

• Provide the mechanisms and protocols to ease interconnection between platform

modules and to allow data uploading/consuming from the different sources,

enhancing interoperability between the platform and other systems. (Done in

SmartEnCityD6.4, 2017)

• Provide the mechanisms to build ICT solutions for different stakeholders offering

actionable information and recommendations, to empower citizens on decision

making in relation to home energy consumption and mobility and to encourage them

to reduce their environmental and resources footprint. (Done in SmartEnCityD6.5,

2017)

• Provide mechanisms to build added value service linking the platform to social

networks with the objective to boost engagement of stakeholders with the ICT

platform and more importantly raise awareness about energy consumption. Also

provide mechanisms to build added value services offering data analysis of monitored

data, through machine learning big data techniques or business intelligence

techniques. (Done in SmartEnCityD6.6, 2017)

• Integrate and validate the different modules of the ICT platform. (This document

Deliverable 6.7)

2.2 Objectives of Task 6.7

The main objective for this task (Task 6.7) and its deliverable (D6.7) is to test and assess the

different modules of the ICT platform of SmartEnCity. Specific objectives of the Task 6.7 are:

• Identification of a generic integration and validation methodology applicable for smart

city projects to be framed to the specific needs of SmartEnCity.

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 18 / 128

• Selection and definition of integrity and validation tests, including the definition of the

test and the testing templates to be completed during the tests

• Deployment of tests of a set of representative modules of the SmartEnCity CIOP

platform developed in WP6

• Define and implement at least one end-to-end test to show the integration of the

developed modules in a complete scenario.

• Set the basis for integration and validation of the platform and added value services

to be then implemented for each lighthouse city of SmartEnCity.

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 19 / 128

3 Integration and Validation

This chapter presents a generic integration and validation methodology applicable for smart

cities projects developed in Task 6.7. Next, this testing methodology will be framed to the

specific needs of SmartEnCity to validate the demonstrators developed in the project.

3.1 Introduction

Software testing is a quality assurance activity intended to check whether the actual test

results are in line with the expected results and to ensure that the software system is having

no sensible deviation from the original business requirements. Software testing also helps

the end-users and software developers to identify errors, gaps or missing functional and non-

functional requirements that support the business requirements. It can be either done

manually or using automated tools.

In manual testing, developers and end-user testers manually execute test cases without

using any automation tools. Any new application or tool must be manually tested before its

testing can be automated. Manual testing requires more effort than automated testing, but is

required to check automation feasibility. Moreover, manual testing does not require

knowledge of any testing tool. On the other hand, automated testing implies using an

automation tool to execute the test cases. The automation software tools can also enter test

data into the system under test, compare expected and actual results and generate detailed

test reports.

There exist two types of software testing techniques, namely, white box and black box

testing. White-box testing or structural testing is a method of testing software that tests

internal structures or workings of an application, as opposed to black-box testing, which

examines the functionality of an application.

The testing techniques used to assess that an application behaves and looks as expected

embrace all the components of the vertical slice of a software suite, i.e. from the frontend to

the backend. Some of these testing techniques are:

• Functional testing: Functional testing is a type of testing which verifies that each

function of the software application operates in conformance with the functional

requirement specification. This testing mainly involves black box testing and it is not

concerned about the source code of the application. Each and every functionality of

the system is tested by providing appropriate input, verifying the output and

comparing the actual results with the expected results. This testing involves checking

of User Interface, APIs, Database, security, client/server applications and functionality

of the Application Under Test. The testing can be done either manually or using

automation tools

• Non-functional testing: Similar to functional requirements, there are non-functional

requirements like performance, usability, load factor that are also equally important to

support the correct functioning of an application. Thus, non-functional testing is a type

of testing which verifies that the software application operates in conformance with

the non-functional requirement specification

• Security testing: Security enforcement is a set of measures to protect an application

against unforeseen actions that cause it to stop functioning or being exploited.

Unforeseen actions can be either intentional or unintentional. Security testing is a

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 20 / 128

variant of non-functional testing, which ensures that system and applications in an

organization are free from authorization and authentication weaknesses that may

cause a big loss

• Load testing: Load testing helps determine how the application behaves when

multiple users access it simultaneously (concurrency)

• Time response testing: Time response testing is a type of testing to ensure software

applications will respond quickly under their expected workload

• Scalability testing: Scalability Testing is the ability of a network, system or a process

to continue to function well, when changes are done in size or volume of the system

to meet growing need

• API testing: API is an acronym for Application Programming Interface. It enables

communication and data exchange between two separate software systems. A

software system implementing an API contains functions/sub-routines which can be

executed by another software system

• GUI testing: GUI testing is the process of testing the system's Graphical User

Interface of the Application Under Test. GUI testing involves checking the screens

with the controls like menus, buttons, icons, and all types of bars - toolbar, menu bar,

dialog boxes and windows, etc.

• Smoke testing: Smoke testing, also known as Build Verification Test (BVT), is

preliminary test performed to reveal simple failures severe enough to, for example,

reject a prospective software release. A smoke tester will select and run a subset of

test cases that cover the most important functionality of a component or system, to

ascertain if crucial functions of the software work correctly

• Regression testing: Regression testing is a type of software testing which verifies

that software which was previously developed and tested still performs the same way

after it was changed or interfaced with other software. Changes may include software

enhancements, patches, configuration changes, bug fixes, etc. The purpose of

regression testing is to ensure that those applied changes have not introduced new

faults

Depending on the development phase of an application, the types of testing are:

• Unit testing: Unit testing of software applications is done during the development

(coding) of an application. The objective of unit testing is to isolate a section of code

and verify the correctness of its individual parts. In procedural programming, a unit

may be an individual function or procedure. Unit testing is usually performed by the

developer

• Integration testing: In Integration Testing, individual software modules are

integrated logically and tested as a group. A typical software project consists of

multiple software modules, coded by different programmers. Integration testing

focuses on checking data communication amongst these modules. It is also termed

Integration and Testing

• System testing: System testing is the testing of a complete and fully integrated

software product. Usually software is only one element of a larger computer based

system. Ultimately, software is interfaced with other software/hardware systems.

System testing is actually a series of different tests whose sole purpose is to exercise

the full computer based system

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 21 / 128

3.2 Integration and Validation Methodology

In order to build robust software, developers follow the Software Development Life Cycle

(SDLC) methodology. In parallel to software development tasks, developers and testers also

follow the Software Testing Life Cycle (STLC), which is the sequence of activities carried out

by the testing team from the beginning of the project till the end of the project. Thus, the V

model of testing was developed, as an extension to the Waterfall development cycle, where

for every phase in the development life cycle there is a corresponding testing phase, as

shown in Figure 1. The left side of the model belongs to the Software Development Life

Cycle – SDLC, while the right side of the model is Software Test Life Cycle – STLC. The

entire figure looks like a V, hence the name of the testing model. As opposed to the V model,

the testing phase in a Waterfall model starts after the implementation has been done.

Figure 1 V model of testing

The Software Testing Life Cycle (see

Figure 2) process is executed in a sequence in order to meet the quality goals. Thus, it is not

a single isolated activity but it consists of many different tasks that are executed to achieve

quality assurance in a software product. There are distinct phases in STLC which are given

below:

1. Requirement Analysis

2. Test Planning

3. Test Case Development

4. Environment Setup

Requirements

Analysis
Test Planning

Test Case

Development

Environment

Setup
Test Execution

Test Cycle

Closure

Requirements

Analysis
System Testing

High Level

Design

Integration

Testing

Low Level

Design
Unit Testing

Coding

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 22 / 128

5. Test Execution

6. Test Cycle Closure

Figure 2 Software Testing Life Cycle

Each of the steps shown in

Figure 2 has some Entry Criteria (known as the minimum set of conditions that should be

met before starting the software testing) as well as Exit Criteria (a minimum set of conditions

that should be completed in order to continue the software testing) on the basis of which it

can be decided whether we can move to the next phase of Testing Life cycle or not. The

process phases are described below:

3.2.1 Requirement Analysis

The requirements analysis is the first step in Software Testing Life cycle (STLC), where the

testing team reviews the requirements document with both functional and non-functional

details to identify the testable requirements.

In case of any technical issues, the Quality Assurance (QA) team may setup a meeting with

the clients and the stakeholders (Technical Leads, Business Analyst, System Architects and

Client) to clarify their doubts. Once the QA team is clear with respect to the requirements,

they will document the acceptance criteria and get it approved by the customers.

The activities to be done during the requirements analysis phase are given below:

• Analyzing the system requirement specifications from the testing point of view

• Preparation of Requirement Traceability Matrix (RTM), which maps the technical

requirements with the test cases

• Identifying the testing techniques and testing types

• Prioritizing the tests cases execution

• Analyzing the automation feasibility

• Identifying the details about the testing environment where actual testing will be done

The deliverables (Outcome) derived from the requirement analysis phase are:

• Requirement Traceability Matrix (RTM)

• Automation feasibility report

Requirements

Analysis
Test Planning

Test Case

Development

Environment

Setup
Test Execution

Test Cycle

Closure

Requirements

Analysis
Test Planning

Test Case

Development

Environment

Setup
Test Execution

Test Cycle

Closure

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 23 / 128

3.2.2 Test Planning

The test planning step initiates after the completion of the requirement analysis phase. In this

phase, the QA manager prepares the test plan and test strategy documents. Along with

these documents, the QA manager will also come up with the testing effort estimations.

The activities to be done in the test planning phase are given below:

• Selection of testing approach

• Preparation of test plan and test strategy documents

• Resource planning and assigning roles and responsibility to them

• Selection of testing tools

The deliverables (Outcome) of the test planning phase are:

• Test plan document

• Test strategy document

• Best suited testing approach

• Number of resources, skills required and their roles and responsibilities

• Testing tools to be used

3.2.3 Test Case Development

During this stage, the QA team oversees the writing of the test cases according to the test

plan. The team also writes scripts for automation if required. Verification of both the test

cases and test scripts are done by peers. Creation of test data is done in this phase.

The Activities to be done in Test Case Development phase are summarized below:

• Creation of test cases

• Creation of test scripts if required

• Verification of test cases and automation scripts

• Creation of test data in testing environment

The deliverables (Outcome) of test case development phase are:

• Test cases

• Test scripts (for automation if required)

• Test data

3.2.4 Test Environment setup

The testing environment setup phase comprises the setup or installation process of the

software and hardware required for testing the application. In this step, the integration of

third-party applications is also carried out if required in the project. After setting up the

required software and hardware, the installation of the build is tested. Once the installation is

completed, the test data is generated and smoke testing is executed on the build to check

whether the basic functionalities are working as expected. This phase can be done in parallel

with the Test Case Development phase.

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 24 / 128

Summarizing, the activities to be done in the test environment setup phase are given below:

• As per the requirement and architecture document, the list of required software and

hardware is prepared

• Setting up of test environment

• Creation of test data

• Installation of build and execution of smoke testing on it

The deliverables (Outcome) of the test environment setup phase are:

• Test environment setup is ready

• Test data is created

• Results of smoke testing

3.2.5 Test Execution

The test environment setup should be ready before the test execution is started, where the

test cases are executed in the testing environment. While execution of the test cases, the QA

team may find bugs, which will be reported against that test case. This bug is fixed by the

developer and is retested against the test case by the QA.

The activities to be done in the test execution phase are given below:

• Execution of test cases

• Reporting test results

• Logging defects for the failed test cases

• Verification and retesting of the defect

• Closure of defects

The deliverables (Outcome) of the test execution phase are:

• Test execution report

• Updated test cases with results

• Bug report

3.2.6 Test Cycle Closure

The Test Execution phase should be finalized before starting the test cycle closure activity. In

the test cycle closure phase, the QA team will meet and discuss about the found testing

artifacts. The whole purpose of this discussion is to learn lessons from the previous steps.

Summarizing, the activities to be done in the test cycle closure phase are given below:

• To evaluate the test completion based on test coverage and software quality

• Documentation of the learning (retrospective) from the project

• Analyzing the test results to find out the distribution of severe defects

• Test closure report preparation

The deliverable (Outcome) of the test cycle closure phase is the final report on test closure.

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 25 / 128

Table 4 briefly explains the Software Testing Life Cycle along with the entry criteria, activity,

exit criteria and deliverables associated with each of the previous phases.

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 26 / 128

STLC phases Entry Criteria Activity Exit Criteria Deliverables

(Outcome)

Requirement

analysis

Availability of requirement

document both functional as

well as non-functional

Architectural document of the

application or the product should

be available

Acceptance criteria defined and

duly signed by the customers

Analysis of system requirement

specifications to understand the

different business modules and its

functionalities

To identify the user profile, user

interface and user authentication

Types of tests to be performed on

the application or product should be

identified

Should collect the details about testing

priorities

Preparation of RTM i.e. Requirement

Traceability Matrix

Test Environment details should be

identified in order to do testing

Analysis of automation possibility if it is

required

RTM should be signed

off

The customer should

sign off on the test

automation feasibility

Requirement

Traceability Matrix

(RTM)

Report on Automation

Feasibility if it is

applicable

Test Planning Detailed requirement document

Requirement Traceability Matrix

(RTM)

Automation Feasibility Report

Preparation of Test Plan document

Preparation of Test Strategy document

To analyze the best suited testing

approach for the application or product

To analyze the testing techniques and

the types of testing to be carried out in

Approved Test Plan

document

Approved Test Strategy

document

Document of Effort

estimation

Test Plan document

Test Strategy

document

Effort estimation

document

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 27 / 128

order to maintain the quality

Selection of the testing tools

Estimation on the testing efforts

Resource planning as per the skills

required for testing and also assigning

roles and responsibility to them

Test case

development

Detailed Requirement document

Test Plan and Test strategy

documents

Automation Feasibility Report

Creation of test cases for all the

modules or features in the application

or product

Creation of automation scripts if

required

Review of test cases and test

automation scripts

Test data creation

Reviewed Test cases

Reviewed Test

automation scripts

Test data creation ready

for testing

Test cases

Test automation

scripts

Test data

Test

Environment

setup

System design documents

should be available

Architectural document of the

application should be available

Environment set-up plan

document should be available

Understanding the design and

architecture of the application

Setting up the test environment

Installation of required hardware and

software in order to start testing the

application

Integration of any third-party application

(if required)

Installation of build

Creation of test data

Environment setup is

ready for testing

All the required software

and hardware are

installed

Build installation is

complete and successful

Test data creation is

complete

Smoke testing is done

Test environment

along with test data

Smoke test result

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 28 / 128

Execution of smoke testing on the build

Accepting or rejecting the build as per

the smoke test result

Test Execution Documents like RTM, Test Plan,

Test strategy, Test cases and

Test scripts should be ready

Test environment should be

ready

Test data should be ready

Integration of third party

application (if required) should

be successful

Smoke testing of the application

should be successful

Execution of test cases

Preparation of test result document

Logging defects for the failed test

cases

Mapping of defects with the test cases

To update the test cases and test

strategy if required

Fixed defects should be retested

Closure of the defects if they are

working as expected

Execution of regression testing of the

application or product in order to

ensure its stability post defect closure

All test cases are

executed

Defects are logged and

tracked for closure

Completed the test

case execution

Updated the test

cases wherever

required

Defects reported

Test cycle

closure

All the test cases are executed

and updated

Test results are documented

Defect logs are available

Evaluation of the test completion on the

basis of Test Coverage and Software

Quality

Preparation of Test Closure report

Analyzing the test results to find out the

distribution of severe defects

Signed off test closure

report by the client

Test closure report

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 29 / 128

Table 4 Software Testing Life Cycle

3.3 Test Standardization and Tools

3.3.1 Test Standardization

Several standardization organizations have developed and implemented different standards

to improve the quality of the released software. Some of the widely used standards related to

quality assurance are listed below:

ISO/IEC 9126: The fundamental objective of the ISO/IEC 9126 standard is to address some

of the well-known human biases that can adversely affect the delivery and perception of a

software development project. These biases include changing priorities after the start of a

project or not having any clear definitions of "success". By clarifying, then agreeing on the

project priorities and subsequently converting abstract priorities (compliance) to measurable

values (output data can be validated against schema X with zero intervention), ISO/IEC 9126

tries to develop a common understanding of the project's objectives and goals.

ISO/IEC 9241-11: Part 11 of this standard deals with the extent to which a product can be

used by specified users to achieve specified goals with Effectiveness, Efficiency and

Satisfaction in a specified context of use. This standard proposed a framework that describes

the usability components and the relationship between them. In this standard, the usability is

considered in terms of user performance and satisfaction. According to ISO 9241-11,

usability depends on context of use and the level of usability will change as the context

changes.

ISO/IEC 25000:2005: This standard is commonly known as the standard that provides the

guidelines for Software Quality Requirements and Evaluation (SQuaRE). This standard helps

in organizing and enhancing the process related to software quality requirements and their

evaluations. ISO-25000 replaces the ISO standard ISO-9126

ISOIEC/IEEE 29119: The purpose of this internationally agreed set of standards is to support

software testing within any software development life cycle or organisation. ISO/IEC/IEEE

29119 software testing standards are a set of internationally defined documents addressing

the software testing concepts, processes, techniques, documents, technologies, and terms.

Currently ISO/IEC/IEEE 29119 has five parts. The set of standards use a layered approach

to defining software testing, which is common to many ISO standards. This set of standards

presents: test definitions and concepts (part 1); test processes (part 2); test documentation

(part 3); test techniques (part 4); and keyword-driven testing (part 5).

3.3.2 Testing Tools

In the nested sections below, some testing tools that support automation of tests are

presented. The testing tools are classified into two categories; functional and performance

testing tools. In its turn, functional testing tools are further on subdivided into API and GUI

based tools.

Functional GUI testing tools

GUI testing is the process of testing the system’s Graphical User Interface of the Application

Under Test. GUI testing involves checking the screens with the controls like menus, buttons,

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 30 / 128

icons, and all types of bars - toolbar, menu bar, dialog boxes and windows, etc. Below is a

list of popular used GUI testing tools:

Selenium – Popular open source functional testing tool, which is used for automating web

applications for GUI testing purposes

Sikuli – It automates anything that can be seen on the screen. It uses image recognition to

identify and control GUI components. It is useful to create automation scripts or when there is

no easy access to a GUI's internal or source code.

Robot Framework – It is a generic test automation framework for acceptance testing and

acceptance test-driven development (ATDD). It has easy-to-use tabular test data syntax and

it utilizes the keyword-driven testing approach. Its testing capabilities can be extended by test

libraries implemented either with Python or Java, and users can create new higher-level

keywords from existing ones using the same syntax that is used for creating test cases

Watir – It is an open source Ruby library for automating tests. It interacts with a browser the

same way people do: clicking links, filling out forms and validating text

HPE Unified Functional Testing (UFT) – This is a functional test tool by HP, formerly

known as QTP, which supports keyword and scripting interfaces and features a graphical

user interface

Cucumber – It is a software tool used by computer programmers for testing other software.

It runs automated acceptance tests written in a behavior-driven development (BDD) style. It

allows expected software behaviors to be specified in a logical language that customers can

understand, i.e. allows the execution of feature documentation written in business-facing text

SilkTest – It is a tool for automated function and regression testing of enterprise applications

TestComplete – It gives testers the ability to create automated tests for Microsoft Windows,

Web, Android (operating system), and iOS applications. Tests can be recorded, scripted or

manually created with keyword driven operations and used for automated playback and error

logging. It is broken out into three modules; desktop, web and mobile. Each module contains

functionality for creating automated tests on that specified platform

Functional API testing tools

In API testing, the automation tool is used to send calls to the API, get the output results and

log the system response. Below is a list of popular used API testing tools:

Tricentis – It is a web services testing tool that supports a wide number of protocols, such as

HTTP(s) JMS, AMQP, Rabbit MQ, TIBCO EMS, SOAP, REST, IBM MQ, NET TCP

SoapUI NG Pro – It is a tool that provides extensive REST and SOAP API testing

capabilities

HPE Unified Functional Testing (UFT) – In addition to GUI testing, UTF can be used to test

APIs, since it provides an extensible framework helpful testing the functionality of headless

systems that do not have a user interface. It helps to test the headless technologies like

Databases and Webservices, JMS, etc. By using the API test conversion tool, it is possible to

convert soapUI tests to UFT API tests

Parasoft – It is a feature-rich SOAP testing tool. It provides an interface for automating

complex scenarios across the messaging layer, databases, ESBs, and mainframes. It

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 31 / 128

supports automated test scenarios across the broad range of protocols and messages used

in APIs

vREST – It provides an online solution for specification, mocking of test cases, automated

testing, validation and recording of HTTP RESTful APIs

Postman – It is a lightweight plugin for Google Chrome, which can be used for testing API

services. It is a non CLI HTTP client that can interact with most web APIs

HttpMaster – It is a web development tool to automate web application testing, including API

testing, service testing and website testing. It is primarily used as web API test tool to

automate testing of web API calls

REST-assured – It is a popular framework to test REST services in Java. Testing and

validating REST services in Java is harder than in dynamic languages such as Ruby and

Groovy. REST Assured brings the simplicity of using these languages into the Java domain

Curl – It is a tool to transfer data from or to a server, using one of the supported protocols

(DICT, FILE, FTP, FTPS, GOPHER, HTTP, HTTPS, IMAP, IMAPS, LDAP, LDAPS, POP3,

POP3S, RTMP, RTSP, SCP, SFTP, SMB, SMBS, SMTP, SMTPS, TELNET and TFTP). The

command is designed to work without user interaction

Performance testing tools

There are a wide variety of performance testing tools available in market. The tool chosen

will depend on many factors such as types of protocol supported, license cost, hardware

requirements, platform support, etc. Below is a list of popular used testing tools:

WebLOAD – It is a load testing tool to carry out performance and stress testing in web

applications. This load testing tool combines performance, scalability, and integrity as a

single process for the verification of web and mobile applications. It can simulate hundreds of

thousands of concurrent users making it possible to test large loads and report bottlenecks,

constraints, and weak points within an application

HP LoadRunner – This tool is capable of simulating hundreds of thousands of users, putting

applications under real life loads to determine their behavior under expected loads.

LoadRunner features a virtual user generator, which simulates the actions of live human

users.

LoadView Testing – From small targeted tests to millions of users, this tool can find

performance bottlenecks and adjust capacity plans accordingly. LoadView offers on-demand,

cloud based load testing. It supports test user experience with real browsers, for a complete

performance picture

HTTP Load – It is a throughput testing tool aimed at testing web servers by running several

http or https fetches simultaneously to determine how a server handles the workload

Jmeter – It is one of tools commonly used for load testing of web and application servers. It

can be used as a tool that supports unit tests on database connections with JDBC, FTP,

LDAP, Web services, JMS, HTTP and generic TCP connections

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 32 / 128

3.4 Testing templates

The following subchapters provide sample testing templates that will be reused and adapted

to support SmartEnCity evaluation and validation outcomes (testing deliverables).

3.4.1 Test scenarios and test cases

Template for Test Scenarios:

Test Scenario ID TSn

Test Scenario Title Name of the test scenario

Description <Short and clear description of the test scenario>

Number of Test
cases

How many test cases will be written for this test scenario

Table 5 Template for test scenarios

Template for Test Cases:

Test Case ID TSn_TCn Scenario ID TSn

Title <Title of the test case> / <Type of test: functional, non-functional, performance>

Test Case Description

<Short and clear description of the test case>

Test Data <Specific data that must be used in the testing procedure>

Acceptance
Criteria

<Describe the situation, event, state or output that must be obtained in order to
consider a valid execution of the Test Procedure>

Preconditions <Environmental conditions needed to perform the test procedure. Necessity of
executing a specific Test Procedure before this one in order to provoke a
specific output will be indicated here>

Automated <If automated, indicate
the name of the tool
and/or script used. If
automated, there is no
need to complete the
following steps>

Repeat <Indicate the number of repetitions
needed. Leave a blank space to annotate
the number of repetitions that is being
executed. The Tester has to print the
Testing Procedure as many times as
indicated in this field>

Steps

Action Expected Output Output Passes (Y/N)

1 <Describe the action
needed to execute
the testing
procedure>

<Indicate the
expected output of the
previous action>

<Space for the tester
to handwrite the
obtained result>

“Y” If expected output
and Output matches.

“N” If not.

2 --- --- --- ---

Summary & Comments

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 33 / 128

<Summary of the results and special events that may occur during the testing process: errors or
exceptions found, unexpected behaviours, etc.>

Table 6 Template for test cases

3.4.2 Test summary report template

Template for reporting on tests:

Test Summary Report

Test Case ID Test description Comment Decision

<Same as in
Test Case
template>

<Short and clear
description of the test
case>

<Additional information or
problems encountered during
execution and differences with
the Test Case>

<OK, NOK, POK, NR,
NC>

--- --- --- ---

--- --- --- ---

Table 7 Template for reporting on tests

After executing a test, the decision is defined according to the following rules:

• OK: The test is set to "OK" state when all steps defined in the Test Case are in "Y" state,

i.e. the real result is compliant to the expected result

• NOK: The test is set to "NOK" state when all steps of the Test Case are set to "N" state

or when the result of a step differs from the expected result

• Partial OK (POK): The test is set to "POK" state when at least one step of the Test Case

is set to "N" state or when the result of a step is partially compliant to the expected result.

Criteria to set if result is Partial OK may be qualitative

• NOT RUN (NR): The test is set to “NR” when the Test Case has not yet executed

• NOT COMPLETED (NC): The test is set to "NC" state when at least one step of the Test

Case is set "NR" state

3.4.3 Correction measures report template

Template for correction measures:

Correction Measures Report

Test Case IDs Qualitative
assessment

Quantitative results Correction measures

<Same as in
Test Case
template>

<Qualitative
assessment of the
set of tests>

<Statistics about
performed tests>

<Summary of the results of the
testing. Identifies all resolved
issues and summarizes the details
of their resolution, and lists any
outstanding issues>

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 34 / 128

e.g. TC1, TC2,
TC3, TC4

e.g. All API tests
passed. GUIs are not
optimized for tablet
devices. All
performance tests
passed, etc.

e.g. % of tests OK,

% of tests NOK

% of tests POK

% of tests NR

% of tests NC

Give also statistics
about bugs and
enhancements:

• Total number
• Number of

Critical
• Number of Major
• Number of minor
• Number of

enhancements

e.g. TC1 revealed problems with
the legibility of visual elements on
the chart. The developer team
corrected the observed defects
and the amended code passed the
regression test. However, it was
not possible within the time scales
of the testing task to perform
regression test of the associated
navigation requirements. This
issue remains outstanding, and
should be observed following
installation and use in the live
environment.

Table 8 Template for correction measures

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 35 / 128

4 Integration and Validation in SmartEnCity

This section describes in detail the check plan for the validation of the different modules of

the ICT platform developed in the previous tasks (T6.1-T6.4) of the SmartEnCity project.

Based on the methodological approach described in the previous section (Section 3), this

section details the test planning to be carried out in order to verify that each developed

component of the platform works as expected in terms of behaviour and performance.

The types of tests to be performed to demonstrate the correct operation of the developments

made for the SmartEnCity CIOP platform are classified according to different criteria. Firstly,

according to the number of modules involved in the validation, Unit Tests will be defined per

module and Integration Test allows to validate the correct functioning of the connection

between modules. Focusing on the object to be validated, we identify two main types of

tests: those that test behaviour (Functional Tests) and those that analyse performance

(Performance Test). Finally, the tests will be adapted to each type of module included in the

platform (e.g. Repositories, APIs or Applications)

Figure 3 Unit Test and Integration Test

4.1 Performance Tests

The performance tests are tests that allow to identify the correct operation and with an

adequate quality of service of the software components. There are different types of tests

that allow to evaluate the performance of the system to be validated. The categories

considered most relevant to the evaluation in SmartEnCity are:

• Response Time: It measures the time that elapses since a request is sent until a

response to the request is received. This type of test applies to both transactions and

database queries. Response time is important in performance testing because it

represents how long a user must wait for a request to be processed. This test is

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 36 / 128

measured as the mean response time of an operation or set of significant operations

repeated a representative number of times.

• Data Volume Load Test: This test allows to validate the behaviour of a software

module against transactions or requests involving a high volume of data. The request

or transaction can be an insertion or retrieval. This test allows to identify the limits of

data exchange sizes to be made in transactions to maintain an adequate response

time. This test should allow comparison of response times of transactions that require

different volumes of data.

• Concurrency Load Test: This test is intended to validate the behaviour of a module

under a large number of transactions or simultaneous requests made by several

users. This test is important to verify that the response time is kept within reasonable

limits when the system is subjected to significant load by concurrent users. The test

must allow to identify the average response time of a set of significant transactions

carried out simultaneously by several connected users.

Technologies for conducting performance tests generally depend on the component to be

tested (e.g. repository or API) and the technologies used for the development of the

component. These performance tests will typically be performed automatically by

programming a sequence of commands or script that emulates the operation of a human or

another machine. When the requirements for the results of these tests (response times or

load requirements) are available in advance, the validation of the tests will be made against

those requirements. In case these requirements are not known in advance, the tests will

identify limits and intervals that must be analysed later.

The following table must be completed for the performance tests of each module to which the

performance test battery applies.

Test Type Implementation Result

Response Time This test is measured as the mean
response time of an operation or set of
significant operations repeated a
representative number of times.

Limits or threshold for the
response time

Data volume Load
Tests

This test should allow comparison of
response times of transactions that
require different volumes of data.

Curve representation of
response time for different
volume of data

Concurrency load
Tests

The test must allow identifying the
average response time of a set of
significant transactions carried out
simultaneously by several connected
users.

Curve representation of
response time for different
number of concurrent users.

Table 9 Battery of test to be implemented for performance evaluation

The following table represents the template to be filled with the information of the

performance evaluation of each of the modules.

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 37 / 128

Module Name <End-point name>

Test Type Response Time

Testing Tool <Name of the tool or own developed>

Acceptance Criteria <Expected output to be considered valid>

Implementation

<This test is measured as the mean response time of an operation or set of significant operations
repeated a representative number of times.>

Result

<Limits or threshold for the response time.>

Test Type Data volume Load Tests

Testing Tool <Name of the tool or own developed>

Acceptance Criteria <Expected output to be considered valid>

Implementation

<This test should allow comparison of response times of transactions that require different volumes of
data.>

Result

<Curve representation of response time for different volume of data.>

Test Type Concurrency Load Tests

Testing Tool <Name of the tool or own developed>

Acceptance Criteria <Expected output to be considered valid>

Implementation

<The test must allow identifying the average response time of a set of significant transactions carried
out simultaneously by several connected users.

Result

<Curve representation of response time for different number of concurrent users.>

Table 10 Template for performance test

4.2 Functional Tests

The objective of the functional tests is to verify that the system or module developed works

according to the specifications previously defined. The functional tests prove that the output

results of the processes conform to what is expected from the specified input data.

Functional tests are usually executed manually although in extraction, transformation and

data loading (ETL) processes, these tests could be automated. Among the types of existing

functional tests, only acceptance tests will be considered in SmartEnCity. The purpose of

acceptance tests is to validate that a system complies with the expected functionalities and

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 38 / 128

allow the user of that system to determine its acceptance from the point of view of its

functionality.

The following table must be completed for the functional tests of each of the modules to

which the functional test applies.

Module Name <End-point name>

Test Type Functional Test

Testing Tool <Name of the tool or own developed>

Functionality Input Output Result
(Ok/NOk)

1 <Functionality name and short
description>

<Required
inputs>

<Expected
Outputs>

<Including short
explanation
about the
reason in case
of NOk>

2

Table 11 Template for functional tests in API testing

Module Name <End-point name>

Test Type Functional Test

Testing Tool <Name of the tool or own developed>

Test Case Title <Title of the test case>

Test Case Description

<Short and clear description of the test case>

Steps

Action Expected Output Output Passes (Y/N)

1 <Describe the action
needed to execute
the testing
procedure>

<Indicate the
expected output of the
previous action>

<Space for the tester
to handwrite the
obtained result>

“Y” If expected output
and Output matches.

“N” If not.

2 --- --- --- ---

Summary & Comments

<Summary of the results and special events that may occur during the testing process: errors or
exceptions found, unexpected behaviours, etc.>

Table 12 Template for functional tests in GUI testing

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 39 / 128

4.3 Unit Testing

The unit tests to be carried out in SmartEnCity allow to identify that each developed module

works correctly in isolated mode. These tests will be performed for each of the modules

without the need to do a complete system deployment or partial integration with the rest of

the platform components. Four different types of software components have been identified

in the reference architecture of SmartEnCity (Repositories, Processes, Interoperability

Mechanisms and Intelligent Services) (see Figure 3). The tests to be carried out for each of

the different types of identified components are detailed below. Subsequently, the following

sections will detail the specific tests to be performed for each of the components developed

for the SmartEnCity platform, section 5 identifies the end-points or components to be tested

and in section 6 are described the tests developed for each one of the components.

4.3.1 Repositories Testing

The implementation of the SmartEnCity reference architecture (described in Deliverable 6.3)

identifies 8 different repositories (Vertical, KPI, Historical, Structural, GIS Structural, GIS,

Configuration and Real Time repositories). The test of a repository consists basically in

securing CRUD (Create, Read, Update and Delete) operations. Since it is a reference

platform, the process of validating repositories should be independent of the database

technologies used for its implementation. All repositories of the SmartEnCity reference

platform are exposed to the rest of the platform modules through an interface (API). Thus,

the implementation of the tests of the repository will be carried out by testing the interfaces

developed to expose the repository to the other modules.

SmartEnCity repositories will perform both performance tests and functional tests (see Table

9 and ¡Error! No se encuentra el origen de la referencia.).

4.3.2 Processes Testing

Knowledge layer in SmartEnCity reference architecture implementation integrates the

components for information treatment, management and exploitation. Data transformation

and processing is one of the main purposes of the knowledge layer. Every software module

which collects data, transform them and provide an output can be considered a process.

SmartEnCity reference architecture integrates different kinds of modules included in this

category. Software modules that support the extraction, transformation and loading (ETL) of

data are part of this category, but also those modules able to generate patterns or

behaviours from a collection of data. The analytical data treatment through business

intelligence processes is also a core capability of the reference architecture. The processing

of the geospatial information in order to extract relevant data is also a module which belongs

to this category.

The list of processing modules developed in the implementation of the SmartEnCity

reference architecture is completed in the following section (see Section 5). For those

modules exposing an API to the rest of the modules, the API will be tested. For those

modules implemented as a script, commands in the script will be launched and outputs will

be analysed.

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 40 / 128

As a general rule the processes in SmartEnCity will require both types of test (performance

and functional) (see Table 9 and ¡Error! No se encuentra el origen de la referencia.).

Special cases will be analysed to perform only some of them.

4.3.3 Interoperability Mechanisms Testing

Interoperability mechanisms are used in SmartEnCity reference architecture to implement

two of the layers (Acquisition / Interconnection Layer and Interoperability Layer).

Interoperability mechanisms are implemented to provide an interface to offer different

functionalities and services to third parties that are interested on consuming those resources.

Web services and APIs are the most used mechanisms for interoperability in SmartEnCity

reference architecture. Both Web services and APIs can be tested in a similar way. Tools for

testing web services and APIs send calls to the interface, get output and log the system's

response.

The list of tools existing for testing Web services and APIs is really huge, most of them are

open source and for free. Most of them are focused on the functional testing of the

interfaces. Performance tests require other tools not so accessible, but quite simple scripts or

programs can be developed for such purpose without great effort.

Interoperability mechanisms in SmartEnCity will require the implementation of both

performance tests and functional tests (see Table 9 and ¡Error! No se encuentra el origen

de la referencia.).

4.3.4 Intelligent Services Testing

Intelligent services in SmartEnCity reference architecture are services and applications within

the area of different vertical domains (energy, environment, mobility, etc.) that have been

developed based on the Smart City infrastructure and available data sources. The intelligent

services layer interacts with the platform through the interoperability layer and consumes the

data generated in the knowledge layer.

Several intelligent services have been developed in SmartEnCity for any of the three

verticals addressed in the project (see the complete list in Section 5).

Testing the final application generally means to test a tool through a GUI. A set of case

studies is defined in order to cover all or the most of the functionalities specified. These tests

are usually performed manually.

Intelligent Services in SmartEnCity will require in all cases the implementation of functional

tests while performance tests will be carried out only when any specific performance criteria

is critical for it usage (see Table 9 and ¡Error! No se encuentra el origen de la

referencia.).

4.4 Integration Testing

The purpose of the integration tests is to ensure that each of the modules developed works

as expected once integrated with the rest of the modules of the platform. That means

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 41 / 128

validating the developments through end-to-end tests (See Figure 3). These tests will be

performed mostly manually.

To carry out the SmartEnCity integration tests, the following steps will be performed:

1. Definition of test scenarios: That means the identification and brief description of

one or several test scenarios that present a representative sample of the operational

flow of the components of the different layers of the SmartEnCity reference

architecture.

2. Identify the test environment: It will detail the hardware, software and network

configuration components that will be used to carry out the tests of each of the

previously described scenarios.

3. Identify acceptance criteria: For each of the scenarios the acceptance criteria to

consider for the validation of the scenarios will be established. When it is not possible

to establish detailed acceptance values for each of the criteria, the results of the tests

will represent the mean values obtained and at the end of the tests the corresponding

conclusions will be extracted according to the resulting values.

4. Define testing plan: The detailed test plan for each scenario will include the

following information:

a. Scenario Name

b. Scenario Description

c. Test Environment

i. Hardware Environment

ii. Software Environment

iii. Network Configuration

d. Acceptance Criteria

i. Criterion

ii. Value

e. Involved Components / Modules

i. Component Name

ii. Technology

iii. Query / Transaction

iv. Result

The following table provides all the information necessary to be completed for each of the

test scenarios

Scenario Id: <ID representing the scenario>

Scenario Name: <Name of the Scenario>

Scenario Description <Short description of the scenario>

Test Environment

Hardware Software Network Config.

<Description of the hardware <Description of the software <Description of the network

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 42 / 128

environment used for the
testing>

environment used for the
testing>

configuration used for the
testing>

Acceptance Criteria

Criterion Value

<Name of the criterion for acceptance> <Value for acceptance>

List of Modules Involved

Module Technology Query / Transaction Result

1 <Module name> <Technology/Protocol
used in the
connection>

<Query or Transaction
performed to implement
the connection>

<Ok / NOk.
Including short
explanation about
the reason in case
NOk>

Table 13 Template for Integration Tests

4.5 Added-value Services Testing

Within tasks T3.7, T4.7 and T5.7, the added value services will be implemented. Therefore,

they need to be tested in order to ensure their proper behaviour. There are two required

steps when talking about added value services:

1. Functional tests which ensures the implementation complies with the design (mainly

requirements). This set of tests is usually performed with dummy data under a

controlled environment. In this way, the information is injected by the quality

assurance responsible, being the output a pre-defined value.

2. Integration tests that are run with the aim of assuring the added value service is

working under a real environment and complying with the requirements. That is to

say, accessing databases, information of the platform, etc.

Nevertheless, these are not the only tests that need to be rendered and, as mentioned

before, performance tests are necessary to ensure certain quality parameters. Among them,

response time, concurrence load and data load are pivotal. Complementary, other tests are

also useful, for instance, extensibility, interoperability and modularity.

However, before the definition of the test, the list of added value services is required.

Although the procedures are more or less standards, some particularities need to be taken

into consideration. Table 14 is based on the identification of added-value services carried out

in previous tasks of WP6 (mainly T6.1 and T6.6) and gathers the added value services

identifying the scope and the city that implements it.

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 43 / 128

Type of
service

Description SCOPE LIGHTHOUSE

ESCO City Intervention
area

City
council

Vitoria-
Gasteiz

Tartu Sonderborg

E
n

e
rg

y
 a

s
s
e

s
s
m

e
n

t

Energy use forecast

Estimation of the energy needs at district level for assuring the
comfort values and the supply into all the dwellings. In this way,
weather forecast would help to estimate the individual dwelling
energy needs which will lie in an estimation of the required energy to
fulfill the energy demand. Then, a set of recommendations could be
emitted to the ESCo with the aim at managing energy in an efficient
way.

X X

Home Energy Consumption Monitoring

This service will monitor electrical energy consumption on dwellings.
It will collect electrical consumption information from metering
devices installed in the dwellings and store them in a central
location. This service will provide an HMI for the residents to let them
know about their energy consumption patterns, set consumption
goals and thresholds, receive advice on how to reduce their
consumption, and will allow comparing their consumption with other
residents in their area. The goal of the services is to empower the
resident to engage in energy consumption reduction.

 X X X

TV broadcast service for energy information where a new TV
channel will be established to inform about energy consumption in
the building.

 X X

Integration of the building/district energy consumption on top of GIS
maps.

 X X

Integrated electrical and thermal network energy management
systems (at home, building and district level)

 X X

Monitoring of most relevant Key Performance Indicators X X X X

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 44 / 128

Indoor KPIs (e.g. temperature, humidity, energy) at different levels
(dwelling, building, district).

Outdoors KPIs (e.g. street lights, temperature, speed of wind,
humidity, waste collection).

Heating performance

This service will show the performance indicator of heating system at
the block level. This will show the difference between energy
produced and transferred to the block and energy received back.
Performance comparison can be performed – before intervention
and after.

 X X

CO2 performance

Service showing the total CO2 emission levels generated while
producing all energy required for the block. Performance comparison
can be performed – before intervention and after. Comparison of
performance with solar panels and without.

 X X

Solar panels

• Production
Service showing total energy generated at installation site at
specific time interval together with CO2 emission levels and
electricity prices.

• Consumption
Service showing total energy consumed generated by solar
panels at installation site at specific time interval together
with CO2 emission levels and electricity prices.

• Performance
Indicator showing how much the solar panels are utilized at
the installation site.

 X X

Electricity consumption per m2

Service showing kWh used per m2 in the house. House parameters
like size, condition, insulation, people, weather, degree days etc. are
evaluated. Comparison can be made – before intervention and after
in order to apply the protocol for energy assessment according to

 X X

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 45 / 128

WP7 specification.

S
u

s
ta

in
a

b
le

 m
o

b
ili

ty

Charger point business

Service showing business level of charging point.

 X X

Number of charging CO2 emissions reduction

An analysis of the CO2 emissions that will be avoided can be made
on the basis of km driven and the equivalent fuel consumption.

 X X X X

Charging points geolocation information

Information about the availability of EVs recharging points

 X X X

Charging point performance

Charger point utilization in terms of CO2 and electricity price levels.

 X X

Geolocation of rental cars and bikes

Geolocation tracking for billing purposes and KPI calculations

 X

Geolocation of public transport

Geolocation tracking of the bus location and occupancy values to
inform citizens about the status for the next upcoming bus. It is fed
by real-time information about the location of the bus and the
occupancy index with the aim of providing useful information to the
inhabitants to make use of the public transport.

 X X X

C
it
iz

e
n

e

n
g
a

g
e

m
e
n

t CO2 savings

Information on saved CO2 emission levels gathered from charging
points, electricity consumption in living blocks, etc.

 X X

Surveys

Launching surveys in the district about the building retrofitting
preferences of the neighbors

 X X X X

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 46 / 128

Feedback

Providing information about success stories in building retrofitting

 X X X

Feedback about failures in the services (e.g. EVs charging points,
public transportation, bike sharing) in order to provide support to the
maintenance of the city facilities.

 X X

Information about schedules and routes of public transportation.
Instead of dynamic information on real-time, this service is static in
order to provide inhabitants with information about the routes and
services that are provided by public transportation.

 X X

In
te

g
ra

te
d

in

fr
a

s
tr

u
c
tu

re
 CO2 status

Monitoring of present status of savings of CO2 emission levels.
Indicators “green”, “yellow”, “blue”.

 X X

Electricity price status

Monitoring of present status of electricity price. Indicators “green”,
“yellow”, “blue”.

 X X

In
d

u
st

ry

CO2 status

Service showing industry site/equipment (like water pump)
performance in terms of CO2 emission levels.

 X X

Table 14 List of added value services

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 47 / 128

Once the services are defined, the test plan may be defined for the added value services.

Basically, all the services are similar; they make use of data from the platform to run

calculations or algorithms so as to present a result in a graphical interface, via app or TV

channel or common Web access through browser. In this way, a common and generic test

plan is defined, in spite of the fact that each service has its own peculiarities. However,

detailing all the test cases would increase the size of the document and a general approach

applies for all the services. Specific values for expected outputs need to be detailed when the

test will be performed under task T3.7, T4.7 and T5.7.

Table 15 summarizes in a generic way the functional tests to be carried out in order to

assure the expected functionalities under a controlled environment with dummy data. Table

16 summarizes the integration tests which test the services under real conditions (data). Both

tables are based on the templates defined in previous sections (Section 4.2 and Section 4.4)

Finally, the set of performance tests defined in section 4.1 will be applied to measure the

performance. Apart from the aforementioned tests, there are other performance indicators

that could to be extracted; in this case, they are necessary:

• Extensibility: This indicator measures the possibilities of extending the capabilities of

the added value service. It means the ability of the system to tolerate additional

features.

• Interoperability: This indicator provides information about the capability of the added

value service to interconnect to different platforms under the same interface

specifications.

• Modularity: This measures the degree of partitioning of the added value service in

order to increment the manageability of the component.

• User-friendliness: Finally, in terms of visualization, this indicator obtains how intuitive

the service is.

Module Name Added value services

Test Type Functional Test

Testing Tool Own developed

Test Case Title Added Value Services test

Test Case Description

This test plan treats the evaluation of the added value services from the functional perspective with the
aim of checking the requirements are correctly implemented. For this purpose, dummy data are used
in order to have a controlled environment.

Steps

Action Expected Output Output Passes (Y/N)

1 Functionality “n” is
working according to
the requirement.

The output is basically
a checklist to
determine whether the
functionality is
covered or not. Then,
a mapping between

To be filled in T3.7,
T4.7 and T5.7.

“Y” If expected output
and Output matches.

“N” If not.

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 48 / 128

requirements and real
behaviour of the
service is made.

2 Calculations are
made on basis of the
specifications.

The expected output
is aggregated data
with values according
to the theoretical
calculations
(controlled
environment).

To be filled in T3.7,
T4.7 and T5.7.

“Y” If expected output
and Output matches.

“N” If not.

3 Algorithms run the
operations with the
data to obtain the
result.

The algorithms run
under its defined
specifications and with
the theoretical result
from dummy data.

To be filled in T3.7,
T4.7 and T5.7.

“Y” If expected output
and Output matches.

“N” If not.

4 Results are
visualized under a
user-friendly screen.

The graphical
interface shows the
information that is
obtained as result of
the aforementioned
actions.

To be filled in T3.7,
T4.7 and T5.7.

“Y” If expected output
and Output matches.

“N” If not.

Summary & Comments

When errors, bugs or exceptions are encountered, as the tests are run under controlled conditions,
therefore the contingency plan is to solve these bugs as common procedures in software
development.

Table 15 Functional tests plan for added value services

Scenario Id: Integration of added value services in the platform

Scenario Name: Intelligent services integration

Scenario Description Once the controlled test and run and the services tests are passed, next
step is to work under real environment and real data. Therefore, these tests
are dedicated to the tests with real data.

Test Environment

Hardware Software Network Config.

Data server, mobile and/or
personal computer.

Database, app and/or service. IP communication between the
data repositories of the platform
and the deployed services.

Acceptance Criteria

Criterion Value

Functional service The service is presenting the results as expected.

Data retrieval Data are obtained from the repositories.

List of Modules Involved

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 49 / 128

Module Technology Query / Transaction Result

1 Internal data
repositories

REST API to access
data.

select * from
data_repository where
condition1 and
condition2

To be filled when
testing in T3.7,
T4.7 and T5.7.

2 Added value service iOS and/or Android
app and/or Web
browser.

HTTP GET/POST To be filled when
testing in T3.7,
T4.7 and T5.7.

3 GIS function OGC GIS query To be filled when
testing in T3.7,
T4.7 and T5.7.

4 External data
repositories

REST API to access
data.

JSON queries/XML files To be filled when
testing in T3.7,
T4.7 and T5.7.

5 TV channel DTV Broadcast image To be filled when
testing in T3.7,
T4.7 and T5.7.

Table 16 Integration test plan for added value services

4.6 Monitoring Testing

4.6.1 Introduction

The result of SmartEnCity CIOP will be deployed as a set of web applications and the

corresponding IT infrastructures. This platform is supported on a complex digital environment

composed of devices, technologies and diverse networks that can have effect on the final

result received by the user.

Therefore, it is necessary within the process of evaluation and validation of applications

based on the SmartEnCity platform to continuously monitor and test their networks, servers,

applications and business logic to ensure a satisfactory service.

4.6.2 Monitoring Topics

The checklist for monitoring testing contains the following topics:

Heartbeat page / Service availability monitor

Simple webpage displaying service(s) status. It is usually updated manually by Network

Operation Center (NOC) or any other responsible party to notify customers on service

outages or degradation. It can provide additional details such as estimations on service

recovery. This will greatly reduce load on customer support when SmartEnCity CIOP is

experiencing troubles in normal operation.

Service monitoring

Service design must consider and provide monitoring endpoints. This will simplify monitoring

setup and also guarantee that monitoring tools monitor correct parameters. While it is

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 50 / 128

possible to monitor services without specific monitoring endpoints, it will be less effective

since developers of the service have great in-depth knowledge of how service should behave

and what are the critical parameters to monitor. Additional checks might be implanted without

specific monitoring endpoints – such as memory consumption, system load and response

times. It would be preferable that system can detect anomalies in services instead of having

static thresholds.

Performance monitoring

Performance is usually affected by one of the following: changes in service itself, changes in

usage patterns or changes in infrastructure. Detecting changes in services performance and

understating the cause will help to prevent service degradation or even service outage.

Something as simple as software upgrade can cause performance problems and affect

users’ ability to use the service. Performance monitoring is done by collecting service and

system metrics, visualizing both historical and real-time data and creating alerts when

predefined thresholds are met. Performance tools are usually part of the monitoring solution.

Device monitoring

In addition to service monitoring, SmartEnCity CIOP needs to monitor different devices, such

as sensors and other devices connected to the platform. While generic monitoring tools

provide majority of the functionality needed for device monitoring, it is important to consider

additional requirements that are specific to devices:

• Mechanisms to detect when device is dead or malfunctioning

• Keep track when device was online last time

• Garbage detection: devices data deviates from preset parameters, this could indicate

that device is malfunctioning

Security and auditing

Logs from each service needs to be collected and stored in central location. Monitoring tools

must detect and alert unauthorized access attempts. Those attempts can be detected, but

not limited to, in one of the following areas:

• Multiple login failures for a user

• Login attempts from IPs from different countries/regions

• Login spam – repeated attempts to log in as a different user from the same IP

address

• Other anomalies such as trying to access undefined endpoints

Monitoring team

This team is responsible for monitoring the services and alerting service providers when

service degradation or outage occurs. Responsibilities of the team:

• Opens and manages incidents when service failure occurs

• Handles communication between stakeholders

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 51 / 128

• Monitors and detects trends in performance monitoring tools and detects events that

could lead to service degradation

• Does Tier 1 support in case of service failures – performs actions that are

documented by service provider and are needed to validate failure or recover

services state

4.6.3 Monitoring Tools

There are many tools for the continuous monitoring of digital environments. Most users

combine several different tools to monitor and run their IT infrastructure. The tools are

generally available in three distribution models: software as a service (SaaS), open source

software and proprietary solutions.

Of these existing tools Nagios and Zabbix stand out among the open source and free

solutions, Acronis and LogicMonitor between software as a service and Paessler and

ManageEngine among proprietary solutions. Those and other similar tools must be

configured according to each Lighthouse specifics, there's no one tool that can solve the

monitoring problem in general.

Also, it is important to keep in mind that monitoring is an ongoing process that requires

human resources that must be taken into account when selecting service and development

providers.

4.7 Global Access System

The purpose of this module within the platform is to develop a global user authentication

system that allows access to the data obtained from the different demo areas of both KPIs

and end-points and display them as a friendly way.

This system is defined as the entrance and global access point to collect and compare

indicators and performance of different cities included in the SmartEnCity CIOP.

The main functionalities of the global access system are:

1. Restricted access to registered users with different profiles: administrator, city

manager, services company, etc.

2. Shown figures and graphs with values gathered from ETL Processes grouped by e.g.

category, building or city, and the choice of change the measures type and units

gathered from same webservices.

3. Service, performance and device monitoring of the system components by creating

alerts when anomalies are detected (e.g. device malfunction, response time

exceeded or service not available)

Three main areas are envisaged for this access system in SmartEnCity CIOP:

1. End Points area: This page allows access to endpoints displayed in each demo

showing if the connection has been successful and report the response in JSON

format

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 52 / 128

Figure 4 Global Access System End Points area

2. KPIs area: This page allows access to information of the different KPIs showing each

one in the most optimal way through widgets, graphs or tables

Figure 5 Global Access System KPIs area

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 53 / 128

3. Administrator area: Administrator page allows logging in, abouts and new user

registration. If the registration form is completed correctly, the tool requests

confirmation through an email. Next page shows the demo areas list available.

Figure 6 Global Access System Administrator area

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 54 / 128

5 Identification of end-point elements to Test

5.1 Introduction

The reference architecture proposed for SmartEnCity is presented in the following Figure

(Figure 7). End-points developed in SmartEnCity CIOP fits the proposed layers and the

corresponding architecture.

Figure 7 Smart Cities General Architecture

SmartEnCity CIOP is composed of a set of end-points which provides the functionality for

some of the modules identified in the reference architecture. Modules are integrated in the

supporting layers of the architecture. The following table shows the list of end-points to be

tested, including the layer of the CIOP and the type of the end-point.

CIOP-LAYER END-POINT END-POINT TYPE

Acquisition / Interconnection
Layer

Data Acquisition about Energy
Interoperability
Mechanism

Services for integrating Open
Data

Interoperability
Mechanism

Knowledge Layer ETL Processes (Energy Vertical
Repository)

Process

ETL Processes (Mobility Process

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 55 / 128

Repository)

ETL Processes (Historical
Repository

Process

ETL Processes (Structural
Repository)

Process

Interoperability Layer
API for Energy Services

Interoperability
Mechanism

API for Mobility Services
Interoperability
Mechanism

API for Citizen Engagement
Services

Interoperability
Mechanism

GIS Repo Services Repository
GIS Structural Data Repository
Services

Repository

Intelligent Services Layer Energy Application Intelligent Service

KPI Calculation Services Intelligent Service

Global Access System Intelligent Service

Table 17 List of end-point to test

For each of the end-points developed in the SmartEnCity CIOP, the following information is

collected and included in the following tables.

• End-Point Name: The name of the end-point

• End-Point Type: The end-points including in the COIP platform are of

heterogeneous nature, being the most common types: API, Webservice, Database

and Application.

• Protocol: The way the end-point communicates with others to access and collect

information can be very diverse, some examples: REST, SOAP, MQTT, AMQP, or

JDBC.

• Method: This parameter indicates how data is sent when communicating with other

modules. It is associated to each protocol. Some of the most common methods are:

GET, POST, Client-Server or Publisher-Consumer.

• Input Data Format: Defines the format of the input data of the end-point. Examples

are: Text, CSV, XML, JSON, or User Interaction.

• Output Data Format: Defines the format of the output data of the end-point.

Examples are: Text, CSV, XML, JSON, or User Visualization.

• CIOP Layer: Indicates the layer of the reference architecture to which the end-point

belongs.

• Description: Detailed description of the end-point and the main features,

functionalities or services provided by the end-point.

5.2 Data Acquisition about Energy

End-Point Name Data Acquisition about Energy

End-Point Type WebService

Protocol REST

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 56 / 128

Method POST

Input Data Format Text / CSV

Output Data Format HTTP Response Codes (2XX, 4XX, 5XX …)

CIOP Layer Acquisition / Interconnection Layer

Description

Information coming from different sensors as temperature sensors and energy consumption meters is
collected on time series tables (Real Time Repository)

Services

URL http://${IP_REPO_REALTIME}/activate/${GATEWAY_ACTIVATION}.csv

http://${IP_REPO_REALTIME}/v2/feeds/${GATEWAY_FEEDID}/datastreams/10.c
sv

http://${IP_REPO_REALTIME}/api/${GATEWAY_FEEDID}.csv" --data-raw
"${SENSOR_DATA}

Observations

Test these services is a complex process since first there is a registration and stream selection
actions. To test the services we should use cURL (https://curl.haxx.se/)

For the provisioning:

curl --http1.1 -H "Host: provisioning.connectedenvironments.com" --url
"http://${IP_REPO_REALTIME}/activate/${GATEWAY_ACTIVATION}.csv"

For the agreement on the stream:

curl --http1.1 -H "api.pachube.com" -H "X-PachubeApiKey: ${GATEWAY_APIKEY}" --url
"http://${IP_REPO_REALTIME}/v2/feeds/${GATEWAY_FEEDID}/datastreams/10.csv"

For the data:

curl --http1.1 -X PUT -H "www.pachube.com" -H "X-PachubeApiKey: ${GATEWAY_APIKEY}" -H
"Content-Type: text/csv" --url "http://${IP_REPO_REALTIME}/api/${GATEWAY_FEEDID}.csv" --data-
raw "${SENSOR_DATA}"

Possible testing parameters:

IP_REPO_REALTIME: 217.76.242.53

GATEWAY_SERIAL="c8bedffff7dd4ffdbfffdfff7ffdfefe"

GATEWAY_ACTIVATION="ddd3ba03f1d0db52e6ed62911698e4e01487a738"

GATEWAY_FEEDID="695318714"

GATEWAY_APIKEY="04605149635c4ba167dc6d2357f9508e4428f07a"

IP_REPO_REALTIME="217.76.242.53"

export SENSOR_DATA="30.50,480,243,55,156.7,0,0,99,0,0,0"

Table 18 Description of Data Acquisition about Energy

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 57 / 128

5.3 ETL Processes (Energy Vertical Repository)

End-Point Name ETL Processes (Energy Vertical Repository)

End-Point Type WebService

Protocol REST

Method GET, POST, DELETE

Input Data Format JSON

Output Data Format JSON

CIOP Layer Knowledge Layer

Description

This REST API enables the storage of energy data. It is used in the ETL process to transform real time
data into data for the Energy Vertical. Real Time data is aggregated and stored in the Energy Vertical
Repository using this service. Energy data is linked to structural data. Data consumption is also
enabled using the GET method.

Services

URL http://energyrepo.azurewebsites.net/api/{table}

Method GET

Input Output

Parameter Value Parameter Value

table
Gateways (Other options: DeviceSetups, Locations,
Measurements, Units & MeasureTypes)

JSON representation of each element

URL http://energyrepo.azurewebsites.net/api/{table}

Method POST

Input Output

Parameter Value Parameter Value

body
"{

""SerialNumber"": ""c8bedffff7dd4ffdbfffdfff7ffdfefe"",

""ActivationCode"":
""ddd3ba03f1d0db52e6ed62911698e4e01487a738"",

""ApiKey"":
""04605149635c4ba167dc6d2357f9508e4428f07a"",

""Comments"": ""#DemoGateway"",

""HouseholdID"": 1,

""GatewayModelID"": 1,

""FeedID"": 695318714

}"

Status of the new element

table
Gateways (Other options: DeviceSetups, Locations,
Measurements, Units & MeasureTypes)

URL http://energyrepo.azurewebsites.net/api/{table}/{id}

Method Delete

Input Output

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 58 / 128

Parameter Value Parameter Value

table
DeviceSetups (other options: Gateways, Locations,
Measurements, Units, MeasureTypes…)

JSON representation of each element

id
2

Status of the deleted element

Table 19 Description of ETL Processes (Energy Vertical Repository)

5.4 API for Energy Services

End-Point Name API for Energy Services

End-Point Type API

Protocol REST

Method GET, POST

Input Data Format JSON

Output Data Format JSON

CIOP Layer Interoperability Layer

Description

The API for Energy Services provides the mechanisms for offering the elaborated data in the
Knowledge Layer to the Added Value Services and applications related with Energy. All the
information related with energy will be uploaded, aggregated and processed within Knowledge Layer
and a set of APIs will be created in order to pass all the relevant data to the intelligent applications.

Services

Name Getting Api Key

URL http://{domain_name}/activate/{name}.csv

Method GET

Input Output

Parameter Value Parameter Value

name
389b1b08d8a67c4216d8075ad1f15dc8ae3cb6fc

(plain text)
{apikey},{id},11,0,1,2,3,4,5,6,7,8,9,10

Name Last activity

URL http://{domain_name}/v2/feeds/{id}/datastreams/10.csv

Method GET

Input Output

Parameter Value Parameter Value

apikey
(text plain) 2017-07-
27T12:39:30.000394Z,1720

Name Send data

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 59 / 128

URL http://{domain_name}/api/{id}.csv

Method POST

Input Output

Parameter Value Parameter Value

apikey

body values of 11 channels CSV

Table 20 Description of API for Energy Services

5.5 Energy Application

End-Point Name Energy Application

End-Point Type Application

Protocol N/A

Method N/A

Input Data Format WMS / WFS

Output Data Format User Visualization

CIOP Layer Intelligent Services Layer

Description

The Energy Efficiency Service can offer a dashboard of summary of the collected data from the
households in an aggregated way. This application shows the average, maximum and minimum
energy values per building displayed in charts over the time.

Functionalities

Functionality Expected Output

Navigation through the 2D Map The map moves, zooms according to the user
interaction

Visualization of map layers Show / hide selected layer

Visualization of elements information Show a window containing the alphanumeric
information of the selected object

Present report Show a window containing a report with the
selected fields and window size.

Table 21 Description of Energy Application

5.6 ETL Processes (Mobility Repository)

End-Point Name ETL Processes (Mobility Repository)

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 60 / 128

End-Point Type Script

Protocol bash

Method N/A

Input Data Format SQL table

Output Data Format SQL table

CIOP Layer Knowledge Layer

Description

This ETL process is in charge of transforming real time data and information coming from mobility
devices into data for the Mobility Vertical. Real time data is cleaned, aggregated, processed and
stored in the Mobility Vertical Repository using this service. The processed and elaborated data will be
provided to the intelligent applications that need mobility information.

Services

Input Output

Parameter Value Parameter Value

ItemID ItemID

Timestamp
(selected range) from "date" to "date +
period" Timestamp

"New timestamp"

Latitude
Single value from list

Longitude
Single value from list

Battery
Average value

Odometer
Average value

Speed
Average value

Table 22 Description of ETL Processes (Mobility Repository)

5.7 API for Mobility Services

End-Point Name API for Mobility Services

End-Point Type API

Protocol REST or MQTT

Method POST or Messages

Input Data Format JSON

Output Data Format JSON

CIOP Layer Interoperability Layer

Description

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 61 / 128

The API for Mobility Services provides the mechanisms for offering the elaborated data in the
Knowledge Layer to the Added Value Services and applications related with mobility. All the
information related with mobility will be uploaded, aggregated and processed within Knowledge Layer
and a set of APIs will be created in order to pass all the relevant data to the intelligent applications.

Services

Name Sending data (REST or MQTT)

URL http://{domain_name}/devices/{deviceId}/messages/events?api-version=2016-02-
03

Method POST

Input Output

Parameter Value Parameter Value

Authorization
"connection string" of the IoT endpoint

Content-type
application/json

raw payload
{ "ItemId": 999, "Odometer": 500, "Speed":
35.4, "Battery": 50.2, "Latitude": 44.0,
"Longitude": -1.0 }

Table 23 Description of API for Mobility Services

5.8 API for Citizen Engagement Services

End-Point Name API for Citizen Engagement Services

End-Point Type API

Protocol REST

Method GET, POST

Input Data Format JSON

Output Data Format JSON

CIOP Layer Interoperability Layer

Description

The data related to Citizen Engagement is mainly provided by smartphone apps and inquires fulfilled by
citizens for giving their opinion and evaluation of city services. The results of the surveys are directly stored
into the historic repository where they will be analysed and processed to obtain the information to be
provided to Intelligent applications related to citizen’s sentiments and needs.

Services

Name Get all survey

URL http://{domain_name}/API/Social/GetAllSurvey

Method GET

Input Output

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 62 / 128

Parameter Value Parameter Value

Array of items
{ "id, year, value", "id, year, value", …}

Name Get question result

URL http://{domain_name}/API/Social/GetQuestionResult?QuestionID={QuestionID}&year={year}

Method GET

Input Output

Parameter Value Parameter Value

QuestionID
24

Result
“value”

Year
2017

Table 24 Description of API for Citizen Engagement Services

5.9 ETL Processes (Historical Repository)

End-Point Name ETL Processes (Historical Repository)

End-Point Type Script

Protocol Bash calling a Hadoop file system command (hdfs put)

Method N/A

Input Data Format Postgre SQL backup

Output Data Format No output is produced by the script. Results for the command are
registered in log file. Backup is stored in HDFS (new folder identified with
timestamp)

CIOP Layer Knowledge Layer

Description

Script launched by a cron process that extracts real time data from Real Time Repository (Postgre
SQL backup) and stores it in Hadoop file system (folder with timestamp name). Internal process not
available through a network connection.

Services

Name RTRepoHistorical

URL SERVER_LOCALHOST/user/ciop/RTRepo/"$currentts"

Method hdfs put (Hadoop file system command)

Input Output

Parameter Value Parameter Value

input file
(Postgre SQL
backup file)

/tmp/"$currentts".sql None None

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 63 / 128

Table 25 Description of ETL Processes (Historical Repository)

5.10 ETL Processes (Structural Repository)

End-Point Name ETL Processes (Structural Repository)

End-Point Type Webservice

Protocol REST

Method GET

Input Data Format JSON

Output Data Format JSON

CIOP Layer Knowledge Layer

Description

This REST API offers information about structural data. It is used in the ETL Process to transform real
time data into data for the Energy Vertical. It is used by the Real Time Repository to associate real
time data with structural data.

Services

URL http://structuralrepo.azurewebsites.net/api/{table}/{id}

Method GET

Input Output

Parameter Value Parameter Value

table
households (other options: building,
district & cities) JSON

representation of
each element

{

 "$id": "1",

 "HouseholdID": 27,

 "Address": "6-A",

 "ResidentsNumber": 2,

 "SquareMeters": 30,

 "BuildingID": null,

 "Exposure": null

}

id (optional)
27

Table 26 Description of ETL Processes (Structural Repository)

5.11 GIS Repo Services

End-Point Name GIS Repo Services

End-Point Type Web Service

Protocol SOAP

Method GET, POST, Client Server

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 64 / 128

Input Data Format URI, POST

Output Data Format WFS (GML, GeoJson, .shp, Json, CSV)

WMS (gif, geotiff, kml, png, svg, json, text)

CIOP Layer Interoperability Layer

Description

In this repository it will be kept the information to describe geographically the city area, so it will score
the 2D geometry of the common city elements as well as the alphanumerical info associated to them.

Services

Name WMS GetCapabilities

URL http://geoservergis.azurewebsites.net/geoserver/wms?{service}&{version}&{request
}

Method GET

Input Output

Parameter Value Param Value

SERVICE WMS

Server Capabilities XML:

<WMS_Capabilities xmlns="http://www.opengis.net/wms"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="1.3.0" updateSequence="348"
xsi:schemaLocation="http://www.opengis.net/wms
http://geoservergis.azurewebsites.net:80/geoserver/schemas/
wms/1.3.0/capabilities_1_3_0.xsd">

<Service>

<Name>WMS</Name>

<Title>GeoServer Web Map Service</Title>

[...]

VERSION 2.0.0

REQUEST GetCapabilities

Name WMS GetMap

URL http://geoservergis.azurewebsites.net/geoserver/wms?{service}&{version}&{request}&{layers}&{styles}&{
crs}&{bbox}&{width}&{height}&{format}

Method GET

Input Output

Parameter Value Param Value

SERVICE WMS
Map Image:

VERSION 2.0.0

REQUEST GetMap

layers smartencity:bench

styles point

crs EPSG:25830

bbox

520527.38458945166,47416
47.821567042,529572.1722
914433,4747224.157644480
5

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 65 / 128

width 100

height 100

format image/png

Name WMS GetFeatureInfo

URL http://geoservergis.azurewebsites.net/geoserver/wms?{service}&{version}&{request}&{layers}&{styles}&{
crs}&{bbox}&{width}&{height}&{query_layers}&{x}&{y}

Method GET

Input Output

Parameter Value Param Value

SERVICE WMS

Results for FeatureType 'smartencity:bench':

--

the_geom = [GEOMETRY (Point) with 1 points]

CODIGO = {77A48135-E708-4E6B-9DAD-A54108BA8CD2}

ZONA = 8

SITUACION = IGNACIO RUIZ DE LUZURIAGA

MODELO = B005

FEC_ULT_IN = null

ESTAD_CONS = BUENO

DESPERFECT = NO

DESCR_DESP =

PINTADAS = NO

APTITUD = APTA

OBSERVACIO = MADERA

CARTO_CAMP = CAMPO

FEC_BAJA = null

BAJA = NO

--

VERSION 2.0.0

REQUEST GetFeatureInfo

layers smartencity:bench

styles point

crs EPSG:25830

bbox

520527.38458945166,47416
47.821567042,529572.1722
914433,4747224.157644480
5

width 200

height 200

query_layers smartencity:bench

x 100

y 100

Table 27 Description of GIS Repo Services

5.12 GIS Structural Repo Services

End-Point Name GIS Structural Repo Services

End-Point Type Web Service

Protocol SOAP

Method POST

Input Data Format XML

Output Data Format XML

CIOP Layer Interoperability Layer

Description

Allows the retrieval of the data contained in the structural repo. The access is done in a standard way
using Web Feature Service (WFS), which is defined by the Open Geospatial Consortium. Building,
Thematic Surfaces and Geometric Surfaces can be accessed with this service.

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 66 / 128

Services

Name GIS Structural Repo – Web Feature Service

URL http://3dcity.tecnalia.com:80/ServiciosWeb/services/smartengasteizv1

Method POST

Input Output

Parameter Value Parameter Value

XML Body WFS Simple - GetFeature operation XML The information of the
requested buildings, thematic
surfaces or surface
geometries

Table 28 Description of GIS Structural Repo Services

5.13 API for KPIs

End-Point Name API for KPIs

End-Point Type API

Protocol REST

Method GET

Input Data Format JSON

Output Data Format JSON

CIOP Layer Interoperability Layer

Description

Shows KPI data related to the different domains of the project.

• Energy, includes energy consumption and production information.
• Mobility, like last location, route, total kw recharged in EV stations, etc.
• Citizen Involvement, like engagement degree, number of logins, number of downloads etc.
• ICT, like number of sensing systems installed, mobility equipment connected, percentage of

building connected, etc.

Data can be either calculated on request of pre-calculated by automated services "KPI Calculation
Services".

Services

Name Get electricity consumption

URL http://{domain_name}/api/kpi/GetElectricityConsumption

Method GET

Input Output

Parameter Value Parameter Value

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 67 / 128

number
Total kw consumed

Address of
the building

string number Kw consumed in the
requested building

Services

Name Get electricity production

URL http://{domain_name}/api/kpi/GetElectricityProduction

Method GET

Input Output

Parameter Value Parameter Value

number
Total kw produced

Address of
the building

string number Kw produced in the
requested building

Name Get last position

URL http://{domain_name}/api/kpi/GetLastPosition

Method GET

Input Output

Parameter Value Parameter Value

Device id number JSON Location id and timestamp

Name Get route

URL http://{domain_name}/api/kpi/GetRoute

Method GET

Input Output

Parameter Value Parameter Value

Device id number JSON
Array of locations ids and
timestamps

from timestamp

to timestamp

Name Get charged kw from charging stations

URL http://{domain_name}/api/kpi/GetStationsCharged

Method GET

Input Output

Parameter Value Parameter Value

number Total kw charged in charging
stations

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 68 / 128

id
number

number Kw charged in requested
charging station

Name Get visitors

URL http://{domain_name}/api/kpi/GetVisitors

Method GET

Input Output

Parameter Value Parameter Value

period

number
All visitors

period day/week/mon/3mon/6mon/year number
Visitors per requested period

Name Get engagement degree

URL http://{domain_name}/api/kpi/GetEngagementDegree

Method GET

Input Output

Parameter Value Parameter Value

percent
Engagement degree (calculated
value)

Name Count number of devices installed

URL http://{domain_name}/api/kpi/CountDevices

Method GET

Input Output

Parameter Value Parameter Value

JSON
{

 "electricity": 11,

 "gps": 11,

 "solar": 11,

 "water": 11,

}

type
electricity/gps/solar/water

number
Number of devices per requested
type

Table 29 Description of API for KPIs

5.14 Services for Integrating Open Data

End-Point Name Services for integrating Open Data information

End-Point Type Webservice

Protocol REST / SOAP

Method GET

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 69 / 128

Input Data Format TXT / CSV

Output Data Format CSV / XML

CIOP Layer Acquisition / Interconnection Layer

Description

Fetches Open Data from 3rd party applications like forecast of electricity prices from NordPool, forecast
of CO2 emission levels from Energinet.dk. Implementation and deployment is done inside devices
itself – Acquisition / Interconnection Layer – devices send requests at specific interval to 3rd party
applications to get data. However, this implementation and deployment can be done in Interoperability
layer, depending on where data aggregation will take place.

Services

Name Get electricity prices

URL http://{domain_name}/api/OpenData/GetElectricityPrices

Method GET

Input Output

Parameter Value Parameter Value

JSON Array of prices for next day

Name Get CO2 emission levels

URL http://{domain_name}/api/OpenData/GetCO2Emissions

Method GET

Input Output

Parameter Value Parameter Value

JSON Array of CO2 emission levels
for next day

Table 30 Description of Services for Integrating Open Data

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 70 / 128

6 Deployment of tests

6.1 Unit Tests

6.1.1 Data Acquisition about Energy

6.1.1.1 Performance Test

Module Name Data Acquisition about Energy

Test Type Response Time

Testing Tool Own developed tool (serial)

Acceptance Criteria The average of the response time must be below 250 milliseconds per
measurement in order to be considered valid.

Implementation

This test writes simulated sensor data and stores it in the real time repository using REST API.

This request has been performed 20 times and average response time has been calculated.

Result

Result in millisecond: 110 ms/measurement

The threshold for the response time is set in 250 milliseconds. So, the response time test has been
successfully passed.

Test Type Concurrency Load Tests

Testing Tool Own developed tool (parallel)

Acceptance Criteria Response time must be below 30 seconds when 1000 sensors writing at the

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 71 / 128

same time.

Implementation

This test writes simulated sensor data and stores it in the real time repository using REST API.

Requests are carried out simultaneously by several connected sensors. In order to do that, a request
has been performed by different number of users: 10, 25, 100, 250 and 1000.

Result

As can be seen in the following figure, the bigger is the number of sensors, the more time is needed in
writing the data when performing the same request. However, for storing 1000 sensors’ measurements
it still continues below the response time threshold (30 seconds).

6.1.1.2 Functional Test

Module Name Data Acquisition about Energy

Test Type Functional Test

Testing Tool cURL

Functionality Input Output Result
(Ok/
NOk)

1 Activate a sensor export
GATEWAY_SERIAL="c8bedffff7dd4ffdbfffdfff7ffdfefe"
export
GATEWAY_ACTIVATION="ddd3ba03f1d0db52e6ed629
11698e4e01487a738"
export GATEWAY_FEEDID="695318714"
export
GATEWAY_APIKEY="04605149635c4ba167dc6d2357f

04605149635c4ba167dc
6d2357f9508e4428f07a,
695318714,11,0,1,2,3,4,
5,6,7,8,9,10

Ok

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 72 / 128

9508e4428f07a"
export IP_REPO_REALTIME="217.76.242.53"
export
SENSOR_DATA="30.50,480,243,55,156.7,0,0,99,0,0,0"

curl --http1.1 -H "Host:
provisioning.connectedenvironments.com" --url
"http://${IP_REPO_REALTIME}/activate/${GATEWAY_A
CTIVATION}.csv"

2 Simulate a
sensor’s
provisioning

curl --http1.1 -H "api.pachube.com" -H "X-
PachubeApiKey: ${GATEWAY_APIKEY}" --url
"http://${IP_REPO_REALTIME}/v2/feeds/${GATEWAY_
FEEDID}/datastreams/10.csv"

2017-12-
18T10:42:22+00:00,0
(Current Date)

Ok

3 Simulate a
sensor
measurement

curl --http1.1 -X PUT -H "www.pachube.com" -H "X-
PachubeApiKey: ${GATEWAY_APIKEY}" -H "Content-
Type: text/csv" --url
"http://${IP_REPO_REALTIME}/api/${GATEWAY_FEED
ID}.csv" --data-raw "${SENSOR_DATA}"

Ok
Ok

6.1.2 ETL Processes (Energy Vertical Repository)

6.1.2.1 Performance Test

Module Name ETL Processes (Energy Vertical Repository)

Test Type Response Time

Testing Tool Own developed tool (Script logs)

Acceptance Criteria The average of the response time must be below 3 seconds for the whole
process in order to be considered valid

Implementation

The script reads from database, reads the list of DeviceSetups and Gateways from the Vertical
repository and calls a REST API to store the aggregated measurement. The script contemplates
writing timestamps for the different stages. This test writes the time consumed in each task.

This request has been performed 12 times, and average response time for the whole process has
been calculated.

Result

Result in millisecond: 1360 ms/script execution

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 73 / 128

The threshold for the response time is set in 3 seconds. So, the response time test has been
successfully passed.

Test Type Data volume Load Tests

Testing Tool Own developed tool (Python script with requests library)

Acceptance Criteria Response time must be below 500 milliseconds per measurements when
storing 1000 measurements in a row.

Implementation

This test simulates large storage of data using the REST API provided by the Energy Vertical
repository. A regular script sends 2 measurements per dwelling every hour. The simulation sends up to
1000 measurements (500 dwellings) at one time.

Each request has been performed 25 times and mean response time has been calculated.

Result

As can be seen in the following figure, the bigger is the volume of data, the more time is needed in
store the data. However, the amount of time spent for storing each measurement is still below 500ms.
Therefore, the test shows that 4min will be spend each hour to store 500 dwellings’ data:

• Average measurement storage time: 241ms.

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 74 / 128

6.1.2.2 Functional Test

Module
Name

ETL Processes (Energy Vertical Repository)

Test Type Functional Test

Testing
Tool

Rester (Firefox add-on)

Functionality Input Output Result
(Ok/
NOk)

1 Request all
measurement
information

http://energyrepo.azurewebsites.
net/api/measurements

[

 {

 "$id": "1",

 "MeasurementID": 3,

 "Value": 21,

 "EstimatedCost": 0.865,

 "StartDate": "2017-06-09T12:20:28.22",

 "EndDate": "2017-06-09T12:20:28.22",

 "StartDateTimestamp": 1497005093,

 "EndDateTimestamp": 1497005393,

 "DeviceSetupID": 1

 },

…

]

Ok

2 Request
specific

http://energyrepo.azurewebsites.
net/api/DeviceSetups/1

{

 "$id": "1",

 "DeviceSetupID": 1,

Ok

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 75 / 128

Device Setup
information

 "SetupDate": null,

 "MeasureTypeID": 1,

 "UnitID": 1,

 "ConstantConversionValue": 1,

 "LocationID": 1,

 "ManufacturingYear": 2017,

 "GatewayID": 1,

 "ChannelNumber": 0

}

3 Request
specific
Gateway
information

http://energyrepo.azurewebsites.net/api/
Gateways

 {

 "$id": "2",

 "GatewayID": 2,

 "SerialNumber":
"c8bedffff7dd4ffdbfffdfff7ffdfefe",

 "ActivationCode":
"ddd3ba03f1d0db52e6ed62911698e4e0148
7a738",

 "ApiKey":
"04605149635c4ba167dc6d2357f9508e442
8f07a",

 "Comments": "#DemoGateway",

 "HouseholdID": 33,

 "GatewayModelID": 1,

 "FeedID": 695318714

 }

Ok

6.1.3 API for Energy Services

6.1.3.1 Performance Test

Module Name API Energy Services

Test Type Response Time

Testing Tool Own developed tool

Acceptance Criteria The average of the response time must be below 2 seconds in order to be
considered valid

Implementation

This test evaluates the performance of the response time when an application asks for some data to
API Energy Services. The test consists in 100 times repetition of calling the API Energy Services.
Each time, the time spent since the calling of the API and the reception of the data will be gathered.

Result

Result in milliseconds: 1640

The threshold for the response time is set in 2 seconds. So, the response time test has been
successfully passed.

Test Type Data volume Load Tests

Testing Tool Own developed tool

Acceptance Criteria Response time must be below 3 seconds when requesting less than 200K of
energy data

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 76 / 128

Implementation

This test should allow comparison of response times of transactions that require different volumes of
data. The response time will be different depending on the quantity of data to be processed and sent
by the different functions of API Energy Services.

A program that implements the request process of different amount of data has been developed. The
amount of data requested will be variable among small data (less than 100 bytes) to more heavy data
(up to 200K).

Each request has been performed 100 times and the response time has been calculated.

Result

The following figure presents the results where a request for small quantity of data lasts around 100
ms. and an amount of data bigger than 200K lasts more than 3 seconds.

Test Type Concurrency Load Tests

Testing Tool Own developed tool

Acceptance Criteria Response time must be below 3 seconds when 20 users requesting data for a
period of 6 months at the same time.

Implementation

The test must allow identifying the average response time when requesting data for a period of 6
months. Requests are carried out simultaneously by several connected users. In order to do that, a
request has been performed by different number of users: 1, 2, 5, 10, 20 and 50.

Result

As can be seen in the following figure, the bigger is the number of users, the more time is needed in
retrieving the data when performing the same request. However, for requesting the desired amount of
data for 20 concurrent users it still continues below the response time threshold (3 seconds).

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 77 / 128

6.1.3.2 Functional Test

Module Name API for Energy Services

Test Type Functional Test

Testing Tool Own developed tool

Functionality Input Output Result
(Ok/
NOk)

1 Request of energy
consumption of a building last
month

http://domain_name/GetBuildingC
onsumption?BuildingID=6&DateSt
art=”2017-6-1”&DateEnd=”2017-6-
30”

{ "BuildingID": 6,
"TotalConsumption": "16.84",
“Unit”: “MW” }

Ok

2 Request of energy
consumption of a building for
the last six months

http://domain_name/GetBuildingC
onsumption?BuildingID=6&DateSt
art=”2017-1-1”&DateEnd=”2017-6-
30”

{ "BuildingID": 4,
"TotalConsumption": "125.684",
“Unit”: “MW” }

Ok

3 Request of energy
consumption of a building for
the last year

http://domain_name/GetBuildingC
onsumption?BuildingID=6&DateSt
art=”2016-1-1”&DateEnd=”2016-
12-31”

{ "BuildingID": 19,
"TotalConsumption": "235.36",
“Unit”: “MW” }

Ok

4 Request of energy
consumption of the buildings
of a neighborhood (less than
5 buildings) for last month

http://domain_name/GetNeighborh
oodConsumption?NeighborhoodID
=3&DateStart=”2017-6-
1”&DateEnd=”2017-6-30”

[{ “NeighborhoodID”: 3,
“Buildings”: { "BuildingID": 6,
"TotalConsumption": "16.84",
“Unit”: “MW” }, {
“NeighborhoodID”: 3
"BuildingID": 11,
"TotalConsumption": "14.68",
“Unit”: “MW” } }]

Ok

5 Request of energy
consumption of the buildings
of a neighborhood (less than
5 buildings) for last six
months

http://domain_name/GetNeighborh
oodConsumption?NeighborhoodID
=3&DateStart=”2017-1-
1”&DateEnd=”2017-6-30”

[{ “NeighborhoodID”: 3,
“Buildings”: { "BuildingID": 6,
"TotalConsumption": "84.37",
“Unit”: “MW” }, {
“NeighborhoodID”: 3
"BuildingID": 11,
"TotalConsumption": "69.44",
“Unit”: “MW” } }]

Ok

6 Request of energy
consumption of the buildings
of a neighborhood (less than
5 buildings) for last year

http://domain_name/GetNeighborh
oodConsumption?NeighborhoodID
=3&DateStart=”2016-1-
1”&DateEnd=”2016-12-31”

[{ “NeighborhoodID”: 3,
“Buildings”: { "BuildingID": 6,
"TotalConsumption": "200.47",
“Unit”: “MW” }, {
“NeighborhoodID”: 3

Ok

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 78 / 128

"BuildingID": 11,
"TotalConsumption": "173.58",
“Unit”: “MW” } }]

6.1.4 Energy Application

Module Name Application ENE

Test Type Functional Test

Testing Tool User Interaction

Test Case Title Navigation through the 2D Map

Test Case Description

Test to check the possibility of navigating on the map. Different ways of navigation are going to be
tested: panning the map, zoom in/out

Steps

Action Expected Output Output Passes
(Y/N)

1. Pan the map: User click with the
left mouse button and drag the
map in the desired direction: up,
down, right and left

The map moves
according to user's
direction

The map moves
according to user's
direction

Y

2. Zoom map at cursor location:
User double click on the point of
interest with the left mouse
button. Roll the mouse wheel
forward to scale the map to the
cursor location or roll the mouse
wheel back to reduce map scale
to the cursor location

The map zooms in
according to de user's
click

The map zooms in
according to de user's
click

Y

3. Map Zoom in/Zoom out: Click on
the PLUS (+) or MINUS (-)
button to zoom in/out on the
map

The map zoom changes The map zoom
changes

Y

4. Initial zoom according to the
study area: Open the viewer

The initial map is shown
with the initial zoom
covering the study area

The initial map is
shown with the initial
zoom covering the
study area

Y

Summary & Comments

The application passes the tests for Map Navigation

Test Case Title Visualization of Map Layers

Test Case Description

Test to check the possibility of interacting with the map layers.

Steps

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 79 / 128

Action Expected Output Output Passes
(Y/N)

1. Show map layers menu: Place
the cursor over the map layers
menu icon

The list of available
layers for visualization is
displayed

The list of available
layers for visualization
is displayed

Y

2. Show/hide layers: User clicks on
the checkbox beside the layer
he/she wants to show or hide

The selected layers on
the layers menu should
act in consequence:
Show or hide

The selected layers on
the layers menu
should act in
consequence: Show or
hide

Y

3. Show default basemap layer:
Open the viewer

It provides a basemap
as a background by
default.

It provides a basemap
as a background by
default.

Y

Summary & Comments

The application passes the tests for Map Layers.

Test Case Title Visualization of elements information

Test Case Description

Test to check the possibility to Identify and consult the alphanumeric information of the layers loaded
on the map.

Steps

Action Expected Output Output Passes
(Y/N)

1. Identify: In order to identify an
object displayed, place the
cursor on the map and click the
left mouse button at the point
where we want the information
to be consulted

A window containing the
alphanumeric
information of the
geographic object is
displayed.

A window containing
the alphanumeric
information of the
geographic object is
displayed.

Y

Summary & Comments

The application passes the tests for Visualization of elements information

Test Case Title Present Report

Test Case Description

Test to check the possibility of interacting with the reports

Steps

Action Expected Output Output Passes
(Y/N)

1. Display reports of KPIs: Open
the viewer

The report window
appears on the bottom
right-hand corner of the
viewer

The report window
appears on the bottom
right-hand corner of
the viewer

Y

2. Display data according to View the data according View the data Y

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 80 / 128

selected fields: Select different
fields in the report like address
or date

to the selected fields according to the
selected fields

3. Access the full screen mode:
Click on the icon for full screen

The reports opens in full
screen mode

The reports opens in
full screen mode

Y

4. Display in a larger size each part
of the report: Click on the icon
for larger size

The report enlarges the
element selected to
enlarge.

The report enlarges
the element selected
to enlarge.

Y

5. Share the URL: Click on the icon
for Share URL

It generates a URL for
sharing the report

It generates a URL for
sharing the report

Y

Summary & Comments

The application passes the tests for reports

6.1.5 ETL Processes (Mobility Repository)

6.1.5.1 Performance Test

Module Name ETL Processes (Mobility Repository)

Test Type Response Time

Testing Tool Own developed tool (Azure logs)

Acceptance Criteria Not receiving timeout messages and calculate average values without
exceeding 30 seconds for each mobility object in order to be considered valid

Implementation

This test runs the established CRON to update and feed a Vertical repo, gathering information from
real-time repo (mobility section).

This request has been performed several times not only to measure the response time but also to test
the reliability of the CRON instance.

Result

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 81 / 128

The previous figure presents the executions made through the previous days and each line represents
an ETL process with the information of “when”, “how long” and “how went”.

Actually, there is no real data, nor devices inside the platform, just a couple simulated devices sending
telemetry information. Nonetheless, the acceptance criteria are accomplished because the whole
process (having two devices) needs less than 30 seconds to complete the execution. So, the response
time test has been successfully passed.

6.1.5.2 Functional Test

Module Name ETL Processes (Vertical Repository)

Test Type Functional Test

Testing Tool Visual Studio and SQL Server Manager

Functionality Input Output Result
(Ok/
NOk)

4 Request all
telemetry
information

SELECT * FROM
[Measurement_table] WHERE {Date}
= ‘selected_date’ AND {ItemID} =
‘identifier’

“Table of Measurement objects” Ok

5 Update value UPDATE ‘Item_table’ set {Timestamp}
= ‘DateTime.Now’, {Latitude} =
List.Latitude.Last(), {Longitude} =
List.Longitude.Last(), {Batery} =
Avg(List.Battery), {Odometer} =
Avg(List.Odometer), {Speed} =
Avg(List.Speed)

1 row(s) affected) Ok

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 82 / 128

6.1.6 API for Mobility Services

6.1.6.1 Performance Test

Module Name API Mobility Services

Test Type Response Time

Testing Tool Own developed tool

Acceptance Criteria The average of the response time must be below 2 seconds in order to be
considered valid

Implementation

This test evaluates the performance of the response time when a mobility application asks for some
data to API Mobility Services. The test consists in 100 times repetition of calling the API Mobility
Services. Each time, the time spent since the calling of the API and the reception of the data will be
gathered.

Result

Result in milliseconds: 1206

The threshold for the response time is set in 2 seconds. So, the response time test has been
successfully passed.

Test Type Data volume Load Tests

Testing Tool Own developed tool

Acceptance Criteria Response time must be below 4 seconds when requesting less than 300K of
mobility data

Implementation

This test should allow comparison of response times of transactions that require different volumes of
data. The response time will be different depending on the quantity of data to be processed and sent
by the different functions of API Mobility Services.

A program that implements the request process of different amount of data has been developed. The
amount of data requested will be variable among small data (less than 100 bytes) to more heavy data
(up to 300K).

Each request has been performed 100 times and the response time has been calculated.

Result

The following figure presents the results where a request for small quantity of data lasts around 100 ms
and an amount of data bigger than 300K lasts less than 4 sec.

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 83 / 128

Test Type Concurrency Load Tests

Testing Tool Own developed tool

Acceptance Criteria Response time must be below 5 seconds when 20 users requesting 1500K
bytes of data at the same time.

Implementation

The test must allow identifying the average response time when requesting 1500K bytes. Requests
are carried out simultaneously by several connected users. In order to do that, a request has been
performed by different number of users: 2, 10, 20 and 50.

Result

As can be seen in the following figure, the bigger is the number of users, the more time is needed in
retrieving the data when performing the same request. However, requesting data for 50 concurrent
users it still continues below the response time threshold (5 seconds for 1500K bytes of data).

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 84 / 128

6.1.6.2 Functional Test

Module Name API for Mobility Services

Test Type Functional Test

Testing Tool Own developed tool

Functionality Input Output Result
(Ok/
NOk)

1 Request of the route of a
Mobility device (bicycle, car,
bike) during the current day

http://domain_name/mobility/GetR
oute?VehicleID=4&Date=”2017-
10-16”

{ "RouteID": 1, "RouteName":
"sample string 2",
"RouteCreated": "2017-10-16",
"VehicleID": 4, "Locations": [{
"LocationID": 1, "Name":
"sample string 2", "Latitude": 3.1,
"Longitude": 4.1, "RouteId": 5 }, {
"LocationID": 1, "Name":
"sample string 2", "Latitude": 3.1,
"Longitude": 4.1 }] }

Ok

2 Request of the battery
consumption and other data
of a Mobility device (bicycle,
car, bike) during the current
day

http://domain_name/mobility/GetT
elemetryAverage?VehicleID=5&Da
teStart=”2017-10-
7”&DateEnd=”2017-10-7”

{ “VehicleID”: 5, "Odometer":
1.1, "Speed": 1.1, "Battery": 1.1,
"Latitude": 1.1, "Longitude": 1.1 }

Ok

3 Request of the routes of
several Mobility devices
(bicycle, car, bike) (less than
5 devices) during the current
day

http://domain_name/mobility/GetR
oute?Vehicle=4+5&Date=”2017-
10-16”

[{ "RouteID": 7, "RouteName":
"sample string 2",
"RouteCreated": "2017-10-16",
"VehicleID": 4, "Locations": [{
"LocationID": 1, "Name":
"sample string 2", "Latitude": 3.1,
"Longitude": 4.1, "RouteId": 5 }, {
"LocationID": 1, "Name":
"sample string 2", "Latitude": 3.1,
"Longitude": 4.1 }] }, {
"RouteID": 6, "RouteName":
"sample string 2",
"RouteCreated": "2017-10-16",
"VehicleID": 5, "Locations": [{
"LocationID": 1, "Name":
"sample string 2", "Latitude": 3.1,
"Longitude": 4.1, "RouteId": 5 }, {
"LocationID": 1, "Name":
"sample string 2", "Latitude": 3.1,
"Longitude": 4.1 }] }]

Ok

4 Request of the battery
consumptions and other data
of several Mobility devices
(bicycle, car, bike) (less than
5 devices) during the current
day

http://domain_name/mobility/GetT
elemetryAverage?Vehicle=9+17&
DateStat=”2017-8-
8”&DateEnd=”2017-8-8”

[{ “VehicleID”: 9, "Odometer":
1.1, "Speed": 1.1, "Battery": 1.1,
"Latitude": 1.1, "Longitude": 1.1
}, { “VehicleID”: 17, "Date":
"2017-8-8", "Odometer": 1.1,
"Speed": 1.1, "Battery": 1.1,
"Latitude": 1.1, "Longitude": 1.1 }
]

Ok

5 Request of the battery
consumption and other data
of a Mobility device (bicycle,
car, bike) during for last six
months

http://domain_name/mobility/GetT
elemetryAverage?Vehicle=7&Date
Stat=”2017-5-1”&DateEnd=”2017-
11-30”

{ “VehicleID”: 7, "Odometer":
1.1, "Speed": 1.1, "Battery": 1.1,
"Latitude": 1.1, "Longitude": 1.1 }

Ok

6 Request of the battery
consumption and other data
of a Mobility device (bicycle,
car, bike) during for last year

http://domain_name/mobility/GetT
elemetryAverage?Vehicle=21&Dat
eStat=”2016-1-
1”&DateEnd=”2016-12-31”

{ “VehicleID”: 21, "Odometer":
1.1, "Speed": 1.1, "Battery": 1.1,
"Latitude": 1.1, "Longitude": 1.1 }

Ok

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 85 / 128

6.1.7 API for Citizen Engagement Services

6.1.7.1 Performance Test

Module Name API Citizen Engagement Services

Test Type Response Time

Testing Tool Own developed tool

Acceptance Criteria The average of the response time must be below specified time in order to be
considered valid

Implementation

This test evaluates the performance of the response time when an application asks for some data to

API Citizen Engagement Services. The test consists in 100 times repetition of calling the API Citizen
Engagement Services. This test has been launched on two services to get a mean response time:
GetAllSurvey and GetQuestionsResult.

Result

GetAllSurvey request (desired response time, 3 seconds)

Average time in milliseconds: 1638

GetQuestionsResult request (desired response time, 5 seconds)

Average time in milliseconds: 3968

Each service has different threshold response time. In any event, the response time test has been
successfully passed on both.

Test Type Data volume Load Tests

Testing Tool Own developed tool

Acceptance Criteria Response time must be below 3 seconds when requesting less than 100K of
citizen’s data

Implementation

This test should allow comparison of response times of transactions that require different volumes of
data. The response time will be different depending on the quantity of data to be processed and sent

by the different functions of Citizen Engagement Services.

A program that implements the request process of different amount of data has been developed. The
amount of data requested will be variable among small data (less than 100 bytes) to more heavy data
(up to 100K).

Each request has been performed 100 times and the average response time has been calculated.

Result

The following figure presents the results of each function requesting an amount of 100K of data. On
both cases, the test is accomplished successfully.

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 86 / 128

Test Type Concurrency Load Tests

Testing Tool Own developed tool

Acceptance Criteria Response time must be below 3 seconds when 10 users requesting 500K
bytes of data at the same time.

Implementation

The test must allow identifying the average response time when requesting 500K bytes. Requests are
carried out simultaneously by several connected users. In order to do that, a request has been
performed by different number of users: 1, 2, 10, 20, 50 and 100.

Result

The following figure indicates, even having a 10 concurrent user requests, the system is able to provide
a response time below 3 seconds in order to have an acceptable reply on both functions (3 seconds for
a 500K bytes petition of data).

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 87 / 128

6.1.7.2 Functional Test

Module Name API for Citizen Engagement Services

Test Type Functional Test

Testing Tool Own developed tool

Functionality Input Output Result
(Ok/
NOk)

1 Request of all results of a
specific survey

http://domain_name/GetAllSur
vey?topic=”poll2016”

[{ “survey”: “poll2016”, “questions”: {
“question”: “#1”, “valoration”: 3 }, {
“question”: “#2”, “valoration”: 8 } } , {
“survey”: “poll2016”, “questions”: {
“question”: “#1”, “valoration”: 9 }, {
“question”: “#2”, “valoration”: 4 } }, {…}
]

Ok

2 Request the result of a
specific question of the
survey

http://domain_name/
GetQuestionsResult?question
=”2”

[{ “question”: “#2”, “valoration”: 5 }, {
“question”: “#2”, “valoration”: 8 }, {…}] Ok

6.1.8 ETL Processes (Historical Repository)

6.1.8.1 Performance Test

Module Name ETL Processes (Historical Repository)

Test Type Response Time

Testing Tool Own developed tool (Script logs) See Figure 8

Acceptance Criteria Not receiving time out messages and that the average response time do not
exceeds 30 seconds for the whole process in order to be considered valid

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 88 / 128

Implementation

The script reads from database (SQL dump) and calls Hadoop filesystem to store the database dump.
The script writes time consumed during the execution.

This request has been performed 20 times and mean response time for the whole process has been
calculated.

The tests considered the same amount of registers in SQL (about 30000 registers).

Result

The average result in milliseconds is: 6619

The threshold for the response time is set in 30 seconds. The response time for the test is well below
the threshold so the test has successfully passed.

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T
im

e
 (

s
e

c
)

Execution #

Historical Script Response Time

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 89 / 128

Figure 8 Historical repository HDFS storing script

6.1.8.2 Functional Test

Module Name ETL Processes (Historical Repository)

Test Type Functional Test

Testing Tool Run own development script

Functionality Input Output Result
(Ok/
NOk)

1 Backup in
HDFS from
SQL dump

Input file (Postgre SQL backup
file)

See summary of csv file in Figure
9

None SQL Dump is stored in a
folder using Hadoop (see Figure
10)

Ok

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 90 / 128

Figure 9 SQL Dump input file (current.sql)

Figure 10 CIOP Hadoop folders

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 91 / 128

6.1.9 ETL Processes (Structural Repository)

6.1.9.1 Performance Test

Module Name ETL Processes (Structural Repository)

Test Type Response Time

Testing Tool Rester (Firefox Add-on)

Acceptance Criteria The average of the response time must be below 500 milliseconds for the
whole process in order to be considered valid

Implementation

This test calls the REST API (Structural) to get information about dwellings.

This request has been performed 25 times and average response time has been calculated.

Result

Result in millisecond: 216ms

The threshold for the response time is set in 500 milliseconds. So, the response time test has been
successfully passed.

6.1.9.2 Functional Test

Module Name ETL Processes (Energy Vertical Repository)

Test Type Functional Test

Testing Tool Rester (Firefox add-on)

Functionalit Input Output Resul

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 92 / 128

y t (Ok/
NOk)

4 Request all
household
information

http://structuralrepo.azurewebsites.
net/api/Households

[

 {

 "$id": "1",

 "HouseholdID": 1,

 "Address": "2",

 "ResidentsNumber": 4,

 "SquareMeters": 90,

 "BuildingID": 1,

 "Exposure": "NW"

 },

…

]

Ok

5 Request
specific
Building
information

http://structuralrepo.azurewebsites.
net/api/Buildings/1

{

 "$id": "1",

 "BuildingID": 1,

 "Street": "Avenida de los derechos
humanos",

 "Number": "30",

 "DistrictID": 3,

 "GisID": "590472000001"

}

Ok

6.1.10 GIS Repo Services

Module Name GIS Repo services

Test Type Response Time

Testing Tool Own developed tool

Acceptance Criteria The average of the response time must be below 2 seconds in order to be
considered valid

Implementation

This test obtains the building data contained in the GIS repo and calculates the mean response time.

Using the buildings layer, two services are tested: GetMap and GetFeatureInfo

This request has been performed 100 times and mean response time has been calculated.

Result

GetMap request:

Average time in millisecond: 1189

GetFeatureInfo Request:

Average time in millisecond: 220.2

The threshold for the response time is set in 2 seconds. So, the response time test has been
successfully passed.

Test Type Data volume Load Tests

Testing Tool Own developed tool

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 93 / 128

Acceptance Criteria Response time must be below 2 seconds when requesting 100 entities in a
row.

Implementation

This test should allow comparison of response times of transactions that require different volumes of
data. In this case the GetMap request is going to be done increasing the number of layers requested.

Each request has been performed 100 times and mean response time has been calculated.

Result

As can be seen in the following figure, the bigger is the volume of data, the more time is needed in
retrieve the data. However, the common use of requests is requesting one layer each time and the
results for one layer are below the response time threshold (2 seconds).

Test Type Concurrency Load Tests

Testing Tool JMeter

Acceptance Criteria

Implementation

This test must allow identifying the average response time when performing several requests at the
same time to different services. In this case two services are going to be tested: GetMap,
GetFeatureInfo

Result

As can be seen, the bigger is the number of users, the more time is needed in retrieving the data for
the same request.

For GetFeatureInfo request the response time remains constant until 50 request at the same time.

The GetMap response time is higher because the response is bigger but it also remains constant until
20 request at the same time.

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 94 / 128

6.1.11 GIS Structural Repo Services

6.1.11.1 Performance Test

Module Name GIS Structural Repo services

Test Type Response Time

Testing Tool Own developed tool

Acceptance Criteria The average of the response time must be below 2 seconds in order to be
considered valid

Implementation

This test obtains all the building data contained in the GIS structural repo and calculates the mean
response time. Normally just a few amount of buildings are requested, and not all of them.

This request has been performed 100 times and mean response time has been calculated.

Result

Result in millisecond: 1134

The threshold for the response time is set in 2 seconds. So, the response time test has been
successfully passed.

Test Type Data volume Load Tests

Testing Tool Own developed tool

Acceptance Criteria Response time must be below 2 seconds when requesting 100 entities in a

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 95 / 128

row.

Implementation

This test should allow comparison of response times of transactions that require different volumes of
data. Because of that, in each request different number of surface geometries has been requested: 1,
5, 10, 20, 40, 100, 150, 200, 500 and 750.

Normally the surface geometries of a specific building or city element is requested, so requesting 750
surface geometries in a row is not a normal request.

Each request has been performed 100 times and mean response time has been calculated.

Result

As can be seen in the following figure, the bigger is the volume of data, the more time is needed in
retrieve the data. However, for request with less than 200 surface geometries it still continues below
the response time threshold (2 seconds).

Test Type Concurrency Load Tests

Testing Tool Own developed tool

Acceptance Criteria Response time must be below 2 seconds when 10 users requesting 1500
entities at the same time.

Implementation

The test must allow identifying the average response time when requesting 150 surface geometry
entities. Requests are carried out simultaneously by several connected users. In order to do that, a
request has been performed by different number of users: 1, 2, 5, 10, 20, 40 and 100.

Result

As can be seen in the following figure, the bigger is the number of users, the more time is needed in
retrieving the data when performing the same request. However, for requesting 150 surface geometry
entities for 40 concurrent users it still continues below the response time threshold (2 seconds).

0

1000

2000

3000

4000

5000

6000

7000

1 5 10 20 40 100 150 200 500 750

T
im

e
 (

m
il

li
se

co
n

d
s)

Number of requested entities

Data volume Load Tests

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 96 / 128

6.1.11.2 Functional Test

Module Name GIS Structural Repo services

Test Type Functional Test

Testing Tool Deegree tool

Functionality Input Output Result
(Ok/
NOk)

1 Request all
buildings
information

<wfs:Query
typeName='app:building
_smartengasteizv1'/>

</wfs:GetFeature>

<app:building_smartengasteizv1
gml:id="APP_BUILDING_SMARTENGASTEIZV1_322">

 <app:id>322</app:id>

 <app:building_root_id> 321</app:building_root_id>

 <app:building_parent_id> 321</app:building_parent_id>

 <app:function>1000</app:function>

 <app:class>1000</app:class>

 <app:storeys_above_ground>
7</app:storeys_above_ground>

 <app:year_of_construction> 1962-01-01
</app:year_of_construction>

 <app:measured_height>
15.859760319895258</app:measured_height>

……….

</app:building_smartengasteizv1>

……….

<app:building_smartengasteizv1
gml:id="APP_BUILDING_SMARTENGASTEIZV1_337" >

 <app:id>337</app:id>

………….

Ok

2 Request
specific building
information

<wfs:Query
typeName='app:building
_smartengasteizv1'><o
gc:Filter><ogc:PropertyI
sLike wildCard="*"
singleChar="#"
escapeChar="!"><ogc:P
ropertyName>app:id</o

<app:building_smartengasteizv1 gml:id=" 322">

 <app:building_root_id>321</app:building_root_id>

 <app:building_parent_id>321</app:building_parent_id>

 <app:function>1000</app:function>

 <app:class>1000</app:class>

 <app:storeys_above_ground>7
</app:storeys_above_ground>

Ok

0

500

1000

1500

2000

2500

3000

1 2 5 10 20 40 100

T
im

e
 (

m
il

li
se

co
n

d
s)

Number of users

Concurrency Load Tests

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 97 / 128

gc:PropertyName><ogc
:Literal>322</ogc:Literal
></ogc:PropertyIsLike>
</ogc:Filter>
</wfs:Query>

 <app:year_of_construction>1962-01-
01</app:year_of_construction>

 <app:measured_height>15.85</app:measured_height>

…

</app:building_smartengasteizv1>

3 Request all
thematic
surface
information

<wfs:Query
typeName='app:themati
c_surface_smartengast
eizv1'></wfs:Query>

<app:thematic_surface_smartengasteizv1 gml:id=" 449">

 <app:id>449</app:id>

 <app:building_id>448</app:building_id>

 <app:objectclass_id>34</app:objectclass_id>

 <app:lod2_multi_surface_id>
2332</app:lod2_multi_surface_id>

</app:thematic_surface_smartengasteizv1>

<app:thematic_surface_smartengasteizv1 gml:id="450”>

 <app:id>450</app:id>

 <app:building_id>448</app:building_id>

 <app:objectclass_id>34</app:objectclass_id>

………….

 </app:thematic_surface_smartengasteizv1>

………………………..

Ok

4 Request
specific
thematic
surface
information

<wfs:Query
typeName='app:themati
c_surface_smartengast
eizv1'><ogc:Filter><ogc
:PropertyIsLike
wildCard="*"
singleChar="#"
escapeChar="!"><ogc:P
ropertyName>app:id</o
gc:PropertyName><ogc
:Literal>449</ogc:Literal
></ogc:PropertyIsLike>
</ogc:Filter></wfs:Quer
y>

<app:thematic_surface_smartengasteizv1 gml:id=" 449">

 <app:id>449</app:id>

 <app:building_id>448</app:building_id>

 <app:objectclass_id>34</app:objectclass_id>

 <app:lod2_multi_surface_id>2332
</app:lod2_multi_surface_id>

</app:thematic_surface_smartengasteizv1>

Ok

5 Request all
surface
geometry
information

<wfs:Query
typeName='app:surface
_geometry_smartengast
eizv1'></wfs:Query>

<app:surface_geometry_smartengasteizv1 gml:id="2">

 <gml:boundedBy>

 <gml:Envelope srsName="EPSG:25830">

 <gml:lowerCorner>526429.995
4744340.146</gml:lowerCorner>

 <gml:upperCorner>526456.509
4744367.256</gml:upperCorner>

 </gml:Envelope>

 </gml:boundedBy>

 <app:id>2</app:id>

 <app:parent_id>1</app:parent_id>

 <app:root_id>1</app:root_id>

 <app:geometry>

 <gml:Polygon gml:id="2_APP_GEOMETRY"
srsName="EPSG:25830">

 <gml:exterior>

 <gml:LinearRing>

 <gml:posList>526432.307 4744356.543 515.183
526429.995 4744354.210 515.496 526431.847 4744351.752
515.340 526435.507 4744346.894 515.667 526437.529
4744344.211 515.641 526440.593 4744340.146 515.877
526443.518 4744342.331 515.566 526447.297 4744345.153
515.392 526449.299 4744346.649 515.336 526456.509
4744352.035 515.086 526445.138 4744367.256 514.921
526437.928 4744361.869 515.321 526436.599 4744360.876
515.357 526432.307 4744356.543 515.183 526432.307
4744356.543 515.183</gml:posList>

 </gml:LinearRing>

 </gml:exterior>

Ok

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 98 / 128

 </gml:Polygon>

 </app:geometry>

</app:surface_geometry_smartengasteizv1>

<app:surface_geometry_smartengasteizv1 gml:id="3">

………………….

6 Request
specific surface
geometry
information

<wfs:Query
typeName='app:surface
_geometry_smartengast
eizv1'><ogc:Filter><ogc
:PropertyIsLike
wildCard="*"
singleChar="#"
escapeChar="!"><ogc:P
ropertyName>app:id</o
gc:PropertyName><ogc
:Literal>2</ogc:Literal><
/ogc:PropertyIsLike></o
gc:Filter></wfs:Query>

<app:surface_geometry_smartengasteizv1 gml:id="2">

 <gml:boundedBy>

 <gml:Envelope srsName="EPSG:25830">

 <gml:lowerCorner>526429.995
4744340.146</gml:lowerCorner>

 <gml:upperCorner>526456.509
4744367.256</gml:upperCorner>

 </gml:Envelope>

 </gml:boundedBy>

 <app:id>2</app:id>

 <app:parent_id>1</app:parent_id>

 <app:root_id>1</app:root_id>

 <app:geometry>

 <gml:Polygon gml:id="2_APP_GEOMETRY"
srsName="EPSG:25830">

 <gml:exterior>

 <gml:LinearRing>

 <gml:posList>526432.307 4744356.543 515.183
526429.995 4744354.210 515.496 526431.847 4744351.752
515.340 526435.507 4744346.894 515.667 526437.529
4744344.211 515.641 526440.593 4744340.146 515.877
526443.518 4744342.331 515.566 526447.297 4744345.153
515.392 526449.299 4744346.649 515.336 526456.509
4744352.035 515.086 526445.138 4744367.256 514.921
526437.928 4744361.869 515.321 526436.599 4744360.876
515.357 526432.307 4744356.543 515.183 526432.307
4744356.543 515.183</gml:posList>

 </gml:LinearRing>

 </gml:exterior>

 </gml:Polygon>

 </app:geometry>

</app:surface_geometry_smartengasteizv1>

Ok

6.1.12 API for KPIs

6.1.12.1 Performance Test

Module Names Get electricity consumption, Get electricity production, Get route

Test Type Response Time

Testing Tool Own developed

Acceptance Criteria The average of the response time must be below 2 seconds for time intervals
less than 12 months

Implementation

Test is performed by a script executing this service 100 times in sequence. Input parameters are defined
so requested time interval is less than 12 months.

Result

The average response time is less than 2 seconds.

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 99 / 128

Test Type Data volume Load Tests

Testing Tool Own developed

Acceptance Criteria Response time must be below 3 seconds when requesting data without defined
time periods (all data) in sequence

Implementation

Test is performed by a script executing this service 100 times in sequence. No input parameters defined
for time interval – all data is returned. Maximum possible interval can be returned – 60 months.

Result

The average response time is less than 3 seconds.

Test Type Concurrency Load Tests

Testing Tool Own developed

Acceptance Criteria Response time must be within 2-4 seconds depending on request parameters
for 50 concurrent users

Implementation

Test is performed by a script executing this service 100 times in sequence. Mixed input parameters are
used – with time interval defined and without. Maximum possible interval can be returned – 60 months.

Result

Module Names Get last position, Count number of devices installed

Test Type Response Time

Testing Tool Own developed

Acceptance Criteria The average of the response time must be below 1 second

Implementation

Test is performed by a script executing this service 100 times in sequence.

400

900

1400

1900

2400

2900

Seq#1 Seq#2 Seq#3 Seq#4 Seq#5 Seq#6 Seq#7

M
il

li
se

co
n

d
s,

 m
s

1 15 30 50

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 100 / 128

Result

The average response time is less than 1 second.

Test Type Data volume Load Tests

Testing Tool NA

Acceptance Criteria NA

Implementation

NA

Result

NA

Test Type Concurrency Load Tests

Testing Tool Own developed

Acceptance Criteria Response time must be below 1-2 second

Implementation

Test is performed by a script executing this service 100 times in sequence for 50 concurrent users
simultaneously.

Result

6.1.12.2 Functional Test

Module Name Get electricity consumption

Test Type Functional Test

Testing Tool Own developed

Functionality Input Output Result
(Ok/NOk)

400

600

800

1000

1200

1400

1600

Seq#1 Seq#2 Seq#3 Seq#4 Seq#5 Seq#6 Seq#7

M
il

li
se

co
n

d
s,

 m
s

1 10 30 50

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 101 / 128

1 Return electricity consumption from block
level

 Kwh
consumed

Ok

2 Return electricity consumption from the
building

{“address”:”Sonderborg,
Test address 111,
Denmark”}

Kwh
consumed in
the requested
building

Ok

Module Name Get electricity production

Test Type Functional Test

Testing Tool Own developed

Functionality Input Output Result
(Ok/NOk)

1 Return electricity production from block
level

 Kwh produced
(number)

Ok

2 Return electricity production from
building

{“address”:”Sonderborg,
Test address 111,
Denmark”}

Kwh produced
in requested
building
(number)

Ok

Module Name Get route

Test Type Functional Test

Testing Tool Own developed

Functionality Input Output Result
(Ok/NOk)

1 Return driven route from eCar {“device”:11,”from”:
2017-04-
23T18:25:43.511Z
,”to”: 2017-05-
23T18:25:43.511Z }

Array of
locations ids
and
timestamps
(JSON)

Ok

6.1.13 Services for Integrating Open Data

6.1.13.1 Performance Test

Module Names Get electricity prices, Get CO2 emission levels

Test Type Response Time

Testing Tool Own developed

Acceptance Criteria The average of the response time must be below 2 seconds

Implementation

Test is performed by a script executing this service 100 times in sequence.

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 102 / 128

Result

The average response time is less than 2 seconds.

Test Type Data volume Load Tests

Testing Tool Own developed

Acceptance Criteria Response time must be below 3-4 seconds.

Implementation

Test is performed by a script executing this service 100 times in sequence.

Result

The average response time is less than 3-4 seconds.

Test Type Concurrency Load Tests

Testing Tool Own developed

Acceptance Criteria Response time must be within 2-4 seconds depending on request parameters
for 10 concurrent users

Implementation

Test is performed by a script executing this service 100 times in sequence for 10 concurrent users.

Result

6.1.13.2 Functional Test

Module Name Get electricity prices

Test Type Functional Test

Testing Tool Own developed

Functionality Input Output Result
(Ok/NOk)

800

1000

1200

1400

1600

1800

2000

Seq#1 Seq#2 Seq#3 Seq#4 Seq#5 Seq#6 Seq#7

M
il

li
se

co
n

d
s,

 m
s

1 3 5 10

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 103 / 128

1 Get electricity prices forecast for next 24
hrs

N/A Array of prices for next
day (JSON)

Ok

Module Name Get CO2 emission levels

Test Type Functional Test

Testing Tool Own developed

Functionality Input Output Result
(Ok/NOk)

1 Get CO2 emission levels forecast for next
24 hrs

N/A Array of CO2 emission
levels for next day
(JSON)

Ok

6.2 Integration Tests

6.2.1 Integration test 1: Energy Efficiency Test Scenario

Scenario Id: ENERGYEFFICIENCY_01

Scenario Name: Energy efficiency demonstrator

Scenario Description The Energy Efficiency demonstrator implements the project Reference
Architecture in the lighthouse of Vitoria-Gasteiz. The scenario consists in
testing the (1) acquisition of building data coming from several sensors
installed in a neighbourhood, (2) the transformation of this real-time data
into a historical repository and GIS repository through ETL mechanisms,
(3) the publication of APIs in the interoperability layer capable of querying
data from the historical repository and (4) the visualization of the
aggregated data from a dashboard that leverages the interoperability API.

Test Environment

Hardware Software Network Config.

Temperature sensors

Humidity sensors

Energy consumption meters

Chrome/Firefox web browser

RESTful clients to test the
endpoints

Demonstrator access via
HTTP

Acceptance Criteria

Criterion Value

Response time Below a given value

Failure response Error notifications

Concurrency load response Minimum number of queries/users

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 104 / 128

Awareness to input data changes Smoothness / Page reload / Asynchronous

List of Modules Involved

Module Technology

1 Data acquisition about
energy

WebService

2 ETL Processes (Energy
Vertical Repo)

WebService

Real-time repository

3 ETL Process (Historical
repo)

Script RDBMS / NoSQL

ETL mechanisms to leverage database search and query commands
to transfer data from real-time to historical repositories.

4 ETL Processes (Structural
Repo)

WebService

5 GIS Structural Repo
Services

WebService

6 API for Energy Services Secured API to provide data to the Intelligent Services layer

Data processed by the Knowledge layer is offered by RESTful API

7 GIS Repo Services WebService

ETL mechanisms to feed GIS repository with average values of
temperature and energy consumption.

8 Energy Application Web application

Leverages the Interoperability layer API to provide the user
experience

The list of modules involved in the completion of this test scenario is depictured in Figure 11.

The queries / transaction information related to these modules, as well as the test results, are

detailed in the sections below. Although the modules are numbered consecutively, the

processes are not necessarily sequentially

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 105 / 128

Figure 11 Energy Efficiency test scenario

6.2.1.1 Module 1: Data acquisition about energy

Simulated sensor data are stored on time series tables into the real time repository using the
REST API provided by the Repo. For the test scenario two sensors are used: A temperature
sensor and a consumption meter. Selected sensors are:

• Temperature Sensor: sensor9
• Consumption Meter: sensor0

The following table shows the data of the selected sensors stored in the real time repository

for a selected timestamp (1 hour from '2017-12-21-11:00 to 2017-12-21-12:00'). Data are stored

every 5 minutes.

Query / Transaction Result

SELECT * FROM measurement WHERE
timestamp>'2017-12-21T11' AND
timestamp<'2017-12-21T12';

id | deviceid | timestamp | sensor0 | sensor9

-------+----------+---------------------------+---------+---------+----

30301 | 1 | 2017-12-21T11:03:18+00:00 | 965 |…22

30302 | 1 | 2017-12-21T11:08:19+00:00 | 970 | 22

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 106 / 128

30303 | 1 | 2017-12-21T11:13:19+00:00 | 962 | 22

30304 | 1 | 2017-12-21T11:18:19+00:00 | 975 | 22

30305 | 1 | 2017-12-21T11:23:20+00:00 | 985 | 23

30306 | 1 | 2017-12-21T11:28:20+00:00 | 986 | 23

30307 | 1 | 2017-12-21T11:33:21+00:00 | 995 | 23

30308 | 1 | 2017-12-21T11:38:21+00:00 | 990 | 23

30309 | 1 | 2017-12-21T11:43:21+00:00 | 984 | 23

30310 | 1 | 2017-12-21T11:48:22+00:00 | 983 | 23

30311 | 1 | 2017-12-21T11:53:22+00:00 | 988 | 23

30312 | 1 | 2017-12-21T11:58:23+00:00 | 979 | 23

6.2.1.2 Module 2: ETL Processes (Energy Vertical Repo)

Real Time data are aggregated and stored in the Energy Vertical Repository. This step
exports a table from the time series tables (Real Time Repository) into the Energy Vertical
Repo. The query is performed for the selected sensors and timestamp

The following table shows the data of the selected sensors stored in the Energy Vertical

Repository for a selected timestamp. The data “Value” represents the mean value for the

selected TimeStamp ('2017-12-21-11:00 to 2017-12-21-12:00').

• Temperature Sensor: sensor9 -> DeviceSetupID": 3
• Consumption Meter: sensor0 -> DeviceSetupID": 2

Query / Transaction Result

http://energyrepo.azurewebsites.net/api/
Measurements

...

 {

 "$id": "52060",

 "MeasurementID": 52088,

 "Value": 980.166666666667,

 "EstimatedCost": null,

 "StartDate": "2017-12-21T11:00:00",

 "EndDate": "2017-12-21T12:00:00",

 "StartDateTimestamp": 1513850400,

 "EndDateTimestamp": 1513854000,

 "DeviceSetupID": 2

 },

 {

 "$id": "52061",

 "MeasurementID": 52089,

 "Value": 22.6666666666667,

 "EstimatedCost": null,

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 107 / 128

 "StartDate": "2017-12-21T11:00:00",

 "EndDate": "2017-12-21T12:00:00",

 "StartDateTimestamp": 1513850400,

 "EndDateTimestamp": 1513854000,

 "DeviceSetupID": 3

 },

...

6.2.1.3 Module 3: ETL Process (Historical repo)

Periodically, data from Real Time Repository (Postgre SQL) are backed up in a Hadoop file
system (folder with timestamp name).

The following figure shows the Hadoop folder where the backup data are stored (see Figure

12).

Figure 12 Hadoop backup folder

6.2.1.4 Module 4: ETL Processes (Structural Repo)

It is used to associate real time data with elements in the environment (buildings and

dwelings). First the measurement is linked to a specific Device (DeviceSetupID=2 and

DeviceSetupID=3), then the Gateway related to the device (GatewayID), then the associated

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 108 / 128

dweling (HouseholdID), and finally the Building (BuildingID) and the corresponding identifier

in the GIS Repo (GisID).

Query / Transaction Result

http://energyrepo.azurewebsites.net/api/de
vicesetups/2

{

 "$id": "1",

 "DeviceSetupID": 2,

 "SetupDate": null,

 "MeasureTypeID": 1,

 "UnitID": 11,

 "ConstantConversionValue": 1,

 "LocationID": 7,

 "ManufacturingYear": 2017,

 "GatewayID": 2,

 "ChannelNumber": 0

}

http://energyrepo.azurewebsites.net/api/De
viceSetups/3

 {

 "$id": "3",

 "DeviceSetupID": 3,

 "SetupDate": null,

 "MeasureTypeID": 2,

 "UnitID": 1,

 "ConstantConversionValue": 1,

 "LocationID": 7,

 "ManufacturingYear": 2017,

 "GatewayID": 2,

 "ChannelNumber": 9

 }

http://energyrepo.azurewebsites.net/api/gat
eways/2

{

 "$id": "1",

 "GatewayID": 2,

 "SerialNumber": "c8bedffff7dd4ffdbfffdfff7ffdfefe",

 "ActivationCode":
"ddd3ba03f1d0db52e6ed62911698e4e01487a738",

 "ApiKey": "04605149635c4ba167dc6d2357f9508e4428f07a",

 "Comments": "#DemoGateway",

 "HouseholdID": 33,

 "GatewayModelID": 1,

 "FeedID": 695318714

}

http://structuralrepo.azurewebsites.net/api/
Households/33

{

 "$id": "1",

 "HouseholdID": 33,

 "Address": "1-A",

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 109 / 128

 "ResidentsNumber": 2,

 "SquareMeters": 85,

 "BuildingID": 1,

 "Exposure": "SE"

}

http://structuralrepo.azurewebsites.net/api/
Buildings/1

{

 "$id": "1",

 "BuildingID": 1,

 "Street": "Example street",

 "Number": "1",

 "DistrictID": 3,

 "GisID": "590472000001"

}

6.2.1.5 Module 5: GIS Structural Repo Services

It allows the retrieval of the data about georeferenced buildings contained in the GIS

structural repo. The services provide access to cartographic representation of all the

buildings and other city elements in the study area. This information will set the cartographic

information of the GIS repo.

The following table shows the retrieved data from the GIS Structural Repo for the building

where the sensors of the scenario are located. In addition to the geometric representation of

each building, information such as year of construction or address is obtained from this repo.

Query / Transaction Result

Get Building Info:

<wfs:GetFeature outputFormat='text/xml;
subtype=gml/3.2.1'
xmlns:xsi='http://www.w3.org/2001/XMLSchema-
instance' xmlns:ogc='http://www.opengis.net/ogc'
xmlns:wfs='http://www.opengis.net/wfs'>

<wfs:Query
typeName='app:building_smartengasteizv1'>

<ogc:Filter>

<ogc:PropertyIsLike wildCard="*" singleChar="#"
escapeChar="!">

<ogc:PropertyName>app:id</ogc:PropertyName><o
gc:Literal>239</ogc:Literal></ogc:PropertyIsLike>

</ogc:Filter>

</wfs:Query>

</wfs:GetFeature>

<gml:FeatureCollection
xsi:schemaLocation=">amp;http://www.opengis.net/gml/3.2
http://schemas.opengis.net/gml/3.2.1/deprecatedTypes.xsd
http://www.deegree.org/app
http://3dcity.tecnalia.com/ServiciosWeb/services/smartengasteizv1?SER
VICE=WFS&VERSION=1.1.0&REQUEST=DescribeFeatureTy
pe&OUTPUTFORMAT=text%2Fxml%3B+subtype%3Dgml%2F3.2.
1&TYPENAME=app:building_smartengasteizv1&NAMESPAC
E=xmlns(app=http%3A%2F%2Fwww.deegree.org%2Fapp)"
gml:id="WFS_RESPONSE"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:gml="http://www.opengis.net/gml/3.2">

 <gml:featureMember>

 <app:building_smartengasteizv1
gml:id="APP_BUILDING_SMARTENGASTEIZV1_239"
xmlns:app="http://www.deegree.org/app">

 <app:id>239</app:id>

 <app:building_root_id>200</app:building_root_id>

 <app:building_parent_id>200</app:building_parent_id>

 <app:function>1000</app:function>

 <app:class>1000</app:class>

 <app:storeys_above_ground>6</app:storeys_above_ground>

 <app:year_of_construction>1998</app:year_of_construction>

<app:measured_height>18.107929176153675</app:measured_height>

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 110 / 128

 <app:storeys_above_ground>6</app:storeys_above_ground>

 <app:lod2_solid_id>1720</app:lod2_solid_id>

 <app:viviendas>10</app:viviendas>

 </app:building_smartengasteizv1>

 </gml:featureMember>

</gml:FeatureCollection>

Get Building Address:

<wfs:GetFeature outputFormat='text/xml;
subtype=gml/3.2.1'
xmlns:xsi='http://www.w3.org/2001/XMLSchema-
instance' xmlns:ogc='http://www.opengis.net/ogc'
xmlns:wfs='http://www.opengis.net/wfs'>

<wfs:Query
typeName='app:address_smartengasteizv1'>

<ogc:Filter>

<ogc:PropertyIsLike wildCard="*" singleChar="#"
escapeChar="!">

<ogc:PropertyName>app:id</ogc:PropertyName><o
gc:Literal>239</ogc:Literal></ogc:PropertyIsLike>

</ogc:Filter>

</wfs:Query>

</wfs:GetFeature>

<gml:FeatureCollection
xsi:schemaLocation=">amp;http://www.opengis.net/gml/3.2
http://schemas.opengis.net/gml/3.2.1/deprecatedTypes.xsd
http://www.deegree.org/app
http://3dcity.tecnalia.com/ServiciosWeb/services/smartengasteizv1?SER
VICE=WFS&VERSION=1.1.0&REQUEST=DescribeFeatureTy
pe&OUTPUTFORMAT=text%2Fxml%3B+subtype%3Dgml%2F3.2.
1&TYPENAME=app:address_smartengasteizv1&NAMESPAC
E=xmlns(app=http%3A%2F%2Fwww.deegree.org%2Fapp)"
gml:id="WFS_RESPONSE"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:gml="http://www.opengis.net/gml/3.2">

 <gml:featureMember>

 <app:address_smartengasteizv1
gml:id="APP_ADDRESS_smartengasteizv1_0"
xmlns:app="http://www.deegree.org/app">

 <app:id>0</app:id>

 <app:street>PORTAL DE ARRIAGA</app:street>

 <app:house_number>1A</app:house_number>

 <app:zip_code>01012</app:zip_code>

 <app:city>Vitoria</app:city>

 <app:xal_source> PORTAL DE ARRIAGA, 1A, 01012, Vitoria,
Spain</app:xal_source>

 </app:address_smartengasteizv1>

 </gml:featureMember>

</gml:FeatureCollection>

6.2.1.6 Module 6: API for Energy Services

The information on average temperature and energy consumption of each building is

obtained from the Energy Vertical Repository. GIS repo gets access to this API to collect and

georeference these data.

The following table shows the values of energy consumption and average temperature for

the selected building and day (2017/12/21). The information is retrieved per hour and atypical

values obtained from measurement errors are observed. These values are discarded to

calculate the daily average values.

Query /
Transaction

Result

Energy

http://smarten
cityportal.azur
ewebsites.net/
EnergyEfficien
cy/GetBuilding

{

 "BuildingID": "590472000001",

 "TotalConsumption": 990.247,

 "Unit": "kW",

}

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 111 / 128

Consumption?
BuildingID=59
0472000001&
StartDate=201
7-12-
20&EndDate=
2017-12-21

Values used
to calculate
the
Aggregated
value

http://smarten
cityportal.azur
ewebsites.net/
EnergyEfficien
cy/GetBuilding
Consumption?
BuildingID=59
0472000001&
StartDate=201
7-12-
20&EndDate=
2017-12-21

[{"MeasurementID":52064,"Value":0.0,"EstimatedCost":null,"StartDate":"2017-12-
20T23:00:00","EndDate":"2017-12-
21T00:00:00","StartDateTimestamp":1513807200,"EndDateTimestamp":1513810800,"DeviceSetupID":2},

{"MeasurementID":52066,"Value":0.0,"EstimatedCost":null,"StartDate":"2017-12-
21T00:00:00","EndDate":"2017-12-
21T01:00:00","StartDateTimestamp":1513810800,"EndDateTimestamp":1513814400,"DeviceSetupID":2},

{"MeasurementID":52068,"Value":0.0,"EstimatedCost":null,"StartDate":"2017-12-
21T01:00:00","EndDate":"2017-12-
21T02:00:00","StartDateTimestamp":1513814400,"EndDateTimestamp":1513818000,"DeviceSetupID":2},

{"MeasurementID":52070,"Value":0.0,"EstimatedCost":null,"StartDate":"2017-12-
21T02:00:00","EndDate":"2017-12-
21T03:00:00","StartDateTimestamp":1513818000,"EndDateTimestamp":1513821600,"DeviceSetupID":2},

{"MeasurementID":52072,"Value":0.0,"EstimatedCost":null,"StartDate":"2017-12-
21T03:00:00","EndDate":"2017-12-
21T04:00:00","StartDateTimestamp":1513821600,"EndDateTimestamp":1513825200,"DeviceSetupID":2},

{"MeasurementID":52074,"Value":0.0,"EstimatedCost":null,"StartDate":"2017-12-
21T04:00:00","EndDate":"2017-12-
21T05:00:00","StartDateTimestamp":1513825200,"EndDateTimestamp":1513828800,"DeviceSetupID":2},

{"MeasurementID":52076,"Value":0.0,"EstimatedCost":null,"StartDate":"2017-12-
21T05:00:00","EndDate":"2017-12-
21T06:00:00","StartDateTimestamp":1513828800,"EndDateTimestamp":1513832400,"DeviceSetupID":2},

{"MeasurementID":52078,"Value":5285.0,"EstimatedCost":null,"StartDate":"2017-12-
21T06:00:00","EndDate":"2017-12-
21T07:00:00","StartDateTimestamp":1513832400,"EndDateTimestamp":1513836000,"DeviceSetupID":2},

{"MeasurementID":52080,"Value":12573.0,"EstimatedCost":null,"StartDate":"2017-12-
21T07:00:00","EndDate":"2017-12-
21T08:00:00","StartDateTimestamp":1513836000,"EndDateTimestamp":1513839600,"DeviceSetupID":2},

{"MeasurementID":52082,"Value":12239.0,"EstimatedCost":null,"StartDate":"2017-12-
21T08:00:00","EndDate":"2017-12-
21T09:00:00","StartDateTimestamp":1513839600,"EndDateTimestamp":1513843200,"DeviceSetupID":2},

{"MeasurementID":52084,"Value":12872.0,"EstimatedCost":null,"StartDate":"2017-12-
21T09:00:00","EndDate":"2017-12-
21T10:00:00","StartDateTimestamp":1513843200,"EndDateTimestamp":1513846800,"DeviceSetupID":2},

{"MeasurementID":52086,"Value":12657.0,"EstimatedCost":null,"StartDate":"2017-12-
21T10:00:00","EndDate":"2017-12-
21T11:00:00","StartDateTimestamp":1513846800,"EndDateTimestamp":1513850400,"DeviceSetupID":2},

{"MeasurementID":52088,"Value":980.166666666667,"EstimatedCost":null,"StartDate":"2017-12-
21T11:00:00","EndDate":"2017-12-
21T12:00:00","StartDateTimestamp":1513850400,"EndDateTimestamp":1513854000,"DeviceSetupID":2},

{"MeasurementID":52090,"Value":973.25,"EstimatedCost":null,"StartDate":"2017-12-
21T12:00:00","EndDate":"2017-12-
21T13:00:00","StartDateTimestamp":1513854000,"EndDateTimestamp":1513857600,"DeviceSetupID":2},

{"MeasurementID":52092,"Value":975.571428571429,"EstimatedCost":null,"StartDate":"2017-12-
21T13:00:00","EndDate":"2017-12-
21T14:00:00","StartDateTimestamp":1513857600,"EndDateTimestamp":1513861200,"DeviceSetupID":2}]

Average
Temperature

http://smarten
cityportal.azur
ewebsites.net/
EnergyEfficien
cy/GetBuilding

{

 "BuildingID": "590472000001",

 "AverageTemperature": 21.166,

 "Unit": "ºC"

}

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 112 / 128

Temperature?
BuildingID=59
0472000001&
StartDate=201
7-08-
01&EndDate=
2017-08-04

Values used
to calculate
the Average
Temperature

http://smarten
cityportal.azur
ewebsites.net/
EnergyEfficien
cy/GetBuilding
Temperature?
BuildingID=59
0472000001&
StartDate=201
7-12-
20&EndDate=
2017-12-21

[{"MeasurementID":52065,"Value":0.0,"EstimatedCost":null,"StartDate":"2017-12-
20T23:00:00","EndDate":"2017-12-
21T00:00:00","StartDateTimestamp":1513807200,"EndDateTimestamp":1513810800,"DeviceSetupID":3},

{"MeasurementID":52067,"Value":0.0,"EstimatedCost":null,"StartDate":"2017-12-
21T00:00:00","EndDate":"2017-12-
21T01:00:00","StartDateTimestamp":1513810800,"EndDateTimestamp":1513814400,"DeviceSetupID":3},

{"MeasurementID":52069,"Value":0.0,"EstimatedCost":null,"StartDate":"2017-12-
21T01:00:00","EndDate":"2017-12-
21T02:00:00","StartDateTimestamp":1513814400,"EndDateTimestamp":1513818000,"DeviceSetupID":3},

{"MeasurementID":52071,"Value":0.0,"EstimatedCost":null,"StartDate":"2017-12-
21T02:00:00","EndDate":"2017-12-
21T03:00:00","StartDateTimestamp":1513818000,"EndDateTimestamp":1513821600,"DeviceSetupID":3},

{"MeasurementID":52073,"Value":0.0,"EstimatedCost":null,"StartDate":"2017-12-
21T03:00:00","EndDate":"2017-12-
21T04:00:00","StartDateTimestamp":1513821600,"EndDateTimestamp":1513825200,"DeviceSetupID":3},

{"MeasurementID":52075,"Value":0.0,"EstimatedCost":null,"StartDate":"2017-12-
21T04:00:00","EndDate":"2017-12-
21T05:00:00","StartDateTimestamp":1513825200,"EndDateTimestamp":1513828800,"DeviceSetupID":3},

{"MeasurementID":52077,"Value":0.0,"EstimatedCost":null,"StartDate":"2017-12-
21T05:00:00","EndDate":"2017-12-
21T06:00:00","StartDateTimestamp":1513828800,"EndDateTimestamp":1513832400,"DeviceSetupID":3},

{"MeasurementID":52079,"Value":5285.0,"EstimatedCost":null,"StartDate":"2017-12-
21T06:00:00","EndDate":"2017-12-
21T07:00:00","StartDateTimestamp":1513832400,"EndDateTimestamp":1513836000,"DeviceSetupID":3},

{"MeasurementID":52081,"Value":12573.0,"EstimatedCost":null,"StartDate":"2017-12-
21T07:00:00","EndDate":"2017-12-
21T08:00:00","StartDateTimestamp":1513836000,"EndDateTimestamp":1513839600,"DeviceSetupID":3},

{"MeasurementID":52083,"Value":12239.0,"EstimatedCost":null,"StartDate":"2017-12-
21T08:00:00","EndDate":"2017-12-
21T09:00:00","StartDateTimestamp":1513839600,"EndDateTimestamp":1513843200,"DeviceSetupID":3},

{"MeasurementID":52085,"Value":12872.0,"EstimatedCost":null,"StartDate":"2017-12-
21T09:00:00","EndDate":"2017-12-
21T10:00:00","StartDateTimestamp":1513843200,"EndDateTimestamp":1513846800,"DeviceSetupID":3},

{"MeasurementID":52087,"Value":12657.0,"EstimatedCost":null,"StartDate":"2017-12-
21T10:00:00","EndDate":"2017-12-
21T11:00:00","StartDateTimestamp":1513846800,"EndDateTimestamp":1513850400,"DeviceSetupID":3},{
"MeasurementID":52089,"Value":22.6666666666667,"EstimatedCost":null,"StartDate":"2017-12-
21T11:00:00","EndDate":"2017-12-
21T12:00:00","StartDateTimestamp":1513850400,"EndDateTimestamp":1513854000,"DeviceSetupID":3},

{"MeasurementID":52091,"Value":21.0833333333333,"EstimatedCost":null,"StartDate":"2017-12-
21T12:00:00","EndDate":"2017-12-
21T13:00:00","StartDateTimestamp":1513854000,"EndDateTimestamp":1513857600,"DeviceSetupID":3},

{"MeasurementID":52093,"Value":23.0,"EstimatedCost":null,"StartDate":"2017-12-
21T13:00:00","EndDate":"2017-12-
21T14:00:00","StartDateTimestamp":1513857600,"EndDateTimestamp":1513861200,"DeviceSetupID":3}]

6.2.1.7 Module 7: GIS Repo Services

The GIS Repo provides the link between the alphanumeric data (consumption and

temperature) with the geometric representation of the information. This repository provides

access to both geometry (GetMap) and information (GetFeatureInfo) services.

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 113 / 128

The following table shows the answers to the queries that provide the geometry of the

buildings of the study area (Coronation-Vitoria) and the alphanumeric information of the

building used throughout this integration test.

Query / Transaction Result

GetMap

http://geoservergis.azurewebsites.net/g
eoserver/wms?SERVICE=WMS&VERSI
ON=1.3.0&REQUEST=GetMap&FORM
AT=image%2Fpng&TRANSPARENT=tr
ue&LAYERS=smartencity%3Acoronacio
nbld&STYLES=buildings_temperature&
CRS=EPSG%3A3857&WIDTH=1904&
HEIGHT=990&BBOX=-
299169.75196034467%2C5288913.024
56848%2C-
296895.7503688607%2C5290095.4098
49768

GetFeatureInfo

http://geoservergis.azurewebsites.net/g
eoserver/wms?SERVICE=WMS&VERSI
ON=1.3.0&REQUEST=GetFeatureInfo&
FORMAT=image%2Fpng&TRANSPAR
ENT=true&QUERY_LAYERS=smartenc
ity%3Acoronacionbld&LAYERS=smarte
ncity%3Acoronacionbld&STYLES=buildi
ngs_temperature&INFO_FORMAT=appl
ication%2Fjson&I=50&J=50&CRS=EPS
G%3A3857&WIDTH=101&HEIGHT=10
1&BBOX=-
297701.92215155583%2C5289423.002
86657%2C-
297581.2949662933%2C5289543.6300
51833

{"type": "FeatureCollection","totalFeatures": "unknown","features": [{"type":
"Feature","id": "coronacionbld.590472000001","geometry": {"type":
"MultiPolygon","coordinates":
[[[[526656.881,4744416.295],[526652.79,4744419.171],[526656.816,4744
424.898],[526621.392,4744449.798],[526629.443,4744461.252],[526625.3
53,4744464.127],[526628.805,4744469.037],[526632.895,4744466.162],[5
26638.07,4744473.524],[526644.86,4744468.751],[526646.009,4744470.3
86],[526655.008,4744464.06],[526653.859,4744462.426],[526673.494,474
4448.624],[526674.312,4744448.049],[526673.161,4744446.413],[526682.
979,4744439.512],[526681.254,4744437.058],[526667.451,4744417.422],[
526664.002,4744412.516],[526663.425,4744411.695],[526656.881,47444
16.295]]]]},"geometry_name": "the_geom","properties": {"CODPOLI":
59,"CODPAR": 472,"CODEDI": 1,"CODIGO":
"590472000001","NOMBRE": "PORTAL DE ARRIAGA","PL":
"1A","BARRIOTEXT": "CORONACION","DISTRITO": 1,"VIVIENDAS":
0,"ALTURA": 6,"CONSTRU": 1998,"T_AVG": 21.166,"DATE_T_AVG":
"2017-12-21T00:00:00Z","ENERGY_AVG":
990.247,"DATE_ENERGY_AVG": "2017-12-21T00:00:00Z"}}],"crs":
{"type": "name","properties": {"name": "urn:ogc:def:crs:EPSG::25830"}}}

6.2.1.8 Module 8: Energy Application

The final application of this integration scenario is a GIS application that takes the data from

the GIS repo. Results are shown to the user through a GIS application (see Figure 13) and a

Building Report (see Figure 14).

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 114 / 128

Figure 13 GIS Interface of the Energy Application

Figure 14 Building Report in the Energy Application

6.2.2 Integration test 2: District Heating (Fortum)

As the purpose of integration testing is to validate that individual software modules work as a

complete system. As Tartu’s software and hardware vendors have not been selected we can

only present a sample scenario in this section.

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 115 / 128

Scenario Id: DISTRICT_HEATING_01

Scenario
Name:

Heating data integration

Scenario
Description

The District Heating demonstrator implements the project Reference Architecture in
the lighthouse of Tartu. The scenario consists in testing the (1) acquisition of building
heating data coming from district heating provider - Fortum, (2) the transformation of
this real-time data into a historical repository, (3) the publication of APIs in the
interoperability layer capable of querying data from the historical repository

Test Environment

Hardware Software Network Config.

Smart IoT hub and
temperature sensor

Fortum back-end database

Heating data acquisition agent

Cumulocity IoT platform

Not applicable

Acceptance Criteria

Criterion Value

Fetch Building data from
Fortum backend and push
it to Cumulocity
Push temperature data
from IoT hub

Building and temperature data available on Cumulocity platform

List of Modules Involved

Module
Technolog
y

Query / Transaction Result

 Data
acquisition
agent

REST GET https://fortum.server/xmlliveread/get-
data.php?address=BuildingAddress

POST
https://cumulocity.server/measurement/measurement
s

HTTP/1.1
200 OK

HTTP/1.1
201
Created

 Smart IoT
hub

REST POST
https://cumulocity.server/measurement/measurement
s

HTTP/1.1
201
Created

6.2.3 Integration test 3: Electricity Production from Solar Panels

Scenario Id: SOLAR_ELECTR_PROD_01

Scenario Name: Solar Electricity Production demonstrator

Scenario Description Electricity Production from solar panels demonstrator implements the

Reference Architecture design defined in this project and makes tests on

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 116 / 128

real-time data. Following scenario consists of several steps: 1) acquisition

of electricity data from meter installed in the building (acquisition layer), 2)

publishing this data to real-time repository and separate web application

(knowledge layer), 3) aggregation of data 4) presentation of data in web

application through REST API (interoperability layer).

Test Environment

Hardware Software Network Config.

Energy consumption meter

Datalogger

Chrome/Firefox web browser

RESTful clients to test the

endpoints

Demonstrator access via HTTP

Acceptance Criteria

Criterion Value

Response time Below a given value

Failure response Error notifications

Concurrency load response Minimum number of queries/users

Awareness to input data changes Smoothness / Page reload / Asynchronous

List of Modules Involved

Module Technology

1 Data acquisition of

electricity production

GSM/GPRS (V/PL)

2 Publishing data AMQP (RabbitMQ)

3 ETL process (store and

transform data)

ETL mechanisms for aggregating data

4 API for Electricity

Production Services

Secured API to provide data to the Intelligent Services layer

Data processed by the Knowledge layer is offered by RESTful API

5 Presentation of data in

web application

Web application

Leverages the Interoperability layer API to provide the user

experience

The list of modules involved in the completion of this test scenario are depictured in Figure

15

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 117 / 128

Figure 15 Electricity Production from Solar Panels test scenario

6.2.3.1 Module 1: Data acquisition from device

Configuration Result

Device datalogger
shows real data
coming from
metering device.

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 118 / 128

Gateway log
message window
shows data coming
from this device
(GSM/GPRS).

6.2.3.2 Module 2: Publishing Data

Query /
Transaction

Result

VMS Proxy publishes
data to VMS, data is
saved in database.

Select * from log_row
where lr_datetime >=
‘2018-01-12 00:00:00’
and lr_datetime <=
‘2018-01-12 06:00:00’
and lr_dev_id = 4

6.2.3.3 Module 3: ETL process (store and transform data)

Query / Transaction Result

insert into log_row_week select
lr_dev_id,WEEK(lr_datetime),lr_tag,avg(lr_col0),avg
(lr_col1),avg(lr_col2),avg(lr_col3),avg(lr_col4),avg(lr

Status OK. 168 rows inserted.

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 119 / 128

_col5),avg(lr_col6),avg(lr_col7),lr_type from log_row
where lr_datetime >= '2018-01-01 00:00:00' and
lr_datetime <= '2018-01-07 23:59:59' group by
lr_dev_id,WEEK(lr_datetime);

6.2.3.4 Module 4: API for Electricity Production Services

Query / Transaction Result

GET/log/device/4?from=2018-01-
01%2000:00:00&to=2018-01-
01%2006:00:00

6.2.3.5 Module 5: Presentation of data in web application

User view Result

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 120 / 128

User graph
showing weekly
data from period
2018-01-01
00:00:00-2018-
01-01 06:00:00

User graph
showing daily
data from period
2018-01-01
00:00:00-2018-
01-01 06:00:00

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 121 / 128

7 Report on tests & Correction measures

This section provides the software test reports for the integration and validation task (T6.7) of

the SmartEnCity ICT platform modules. It contains the results of the unit tests (section 6.1)

and integration tests (section 6.2), which were executed during the testing phase. The

information provided in the reports comprises a qualitative assessment of each test and

related correction measures, which deliver further details on the assessment, e.g.

discussions on performance values, along with the identification of issues and plans for their

resolution before the production or operation phase starts in each lighthouse implementation.

7.1 Unit Tests

The table below provides the test summary report for the unit tests deployed in section 6.1.

Test Summary Report

Module Name Qualitative Assessment Correction measures

Data
Acquisition
about Energy

The performance tests in terms of
time response and concurrency
passed according to the acceptance
criteria defined.

The functional tests in data
acquisition about energy showed a
consistent output for sensor
activation, sensor provisioning and
sensor measurement.

In this case, and applicable for all
other tests, the response time
depends on the bandwidth and the
speed of the connections.

The data acquisition system offers a
response time of 110 ms. per measurement,
which means it is proportional to the number
of measurements. On the other hand, the
response time under concurrency conditions
is well handled by the module, since it stays
below 20 seconds for storing 1000 sensor
measurements read concurrently. According
to these results, it can be concluded that
scalability issues will not be anticipated at
production stage.

ETL
Processes
(Energy
Vertical
Repository)

The ETL process, which aggregates
the real-time data and stores it in
the vertical repository, was tested to
verify that the data transformation
was correctly performed.

The ETL scripts showed that the
response time and the data load
tests passed according to the
acceptance criteria defined.

This process aggregates the real-time data
in the Energy Vertical Repo, allowing the
energy applications to easily display different
data perspectives or online analytical
processing (OLAP) cubes to the user,
delegating the processing and data
transformation to the ETL process. In order
to obtain a good throughput, the ETL
process performance, in terms of response
time, should be comparable to the data
acquisition process to assure a smooth data
transfer to the Energy Vertical Repo. In this
regard, response time during the tests is 241
milliseconds for processing and storing 1000
sensor measurements into the Energy
Vertical Repo. These results can be
considered acceptable for assuring a smooth
visualization of data from the energy
applications

API for
Energy
Services

The response time and the
concurrency load tests in the
performance tests fall within the
specified acceptance values.

This process lets the energy applications
leverage the data stored in the Energy
Vertical Repo. The response time of the
interface shows that the response time does

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 122 / 128

The functional tests proved that the
data delivered from the Energy
Vertical Repo is consistent and well
formed.

not anticipate scalability problems when the
number of users increases in production
stage.

Energy
Application

All GUI tests passed. The
navigation is smooth and the look &
feel is consistent.

The GUI is not optimized for mobile devices.
A responsive web design approach should
be adopted in the transition from application
prototype (demonstrator) to a full featured
product.

API Mobility
Services

The functional tests evidenced that
the data delivered from the Mobility
Vertical Repo is consistent and well
formed.

This process lets the mobility applications
leverage the data stored in the Mobility
Vertical Repo. The response time values of
the interface show that scalability problems
are not anticipated when the number of
users increases in production stage.

API Citizen
Engagement
Services

The response time and the
concurrency load tests in the
performance tests fall within the
specified acceptance values.

The functional tests proved that the
data delivered from the Citizen
Engagement Vertical Repo is
consistent with the repo content and
valid.

The response time of the interface shows
that it does not anticipate scalability
problems when the number of users
increases in production stage.

ETL
Processes
(Historical
Repository)

The ETL process, which regularly
dumps data from the Realtime Repo
to a distributed storage system was
tested and verified that the data
storage was correctly performed.

The ETL script showed that the response
time is below the acceptance criteria defined.
However, in this case, differently from the
ETL Energy Vertical, a good throughput is
not critical, since this process aims to update
an analytical database (Historical Repo) and
not an operational one, like the Energy
Vertical Repo is.

While the Realtime Repo is limited in space
and the oldest registries are deleted to
remain it manageable and fast, the Historical
Repo contains the whole data history. This
feature allows auditing the sensor data in
case there is any disagreement derived from
the energy application use and the data is
not available in the Realtime Repo.

ETL
Processes
(Structural
Repository)

The ETL process was tested and
provided consistent and well-formed
results

This ETL extracts data from the dwellings
that is to be combined with GIS data and
sensor data from the Energy Vertical Repo.
The response time (216ms) is similar to the
response time under load conditions of the
Energy Vertical Repo (216ms), assuring that
bottlenecks in the data flow are not
anticipated in production mode.

GIS Repo
services

The GIS Repo services were tested
in response time and data volume
load test. While the response time
for rendering a unique map data
layer falls below the acceptance

This service obtains the building data
contained in the GIS repo in terms of
geometry associated to the structures and
layers. If more than two layers are requested
as options for the map display, the rendering

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 123 / 128

criteria, the response time for
rendering several layers at the
same time exceeds the limit under
some circumstances that do not
affect usability.

time goes above the specification
acceptance criteria of 2 seconds. However,
the common use cases require one layer
each time, which falls below the limits for the
acceptance criteria.

GIS Structural
Repo services

The GIS Structural Repo services
were tested in response time, data
volume and concurrency. All the
tests results comply with the defined
acceptance criteria.

The services were also tested
according to the functional test
definitions. All the outputs from the
tests comply with validation and
consistency requirements.

This service allows the retrieval of building
data and geometry, which is linked to the
Structural Repo and Energy Vertical Repo.

In this case, a good throughput is not critical,
since this process will be updated
periodically only when relevant updates in
the structural representation of the
environment are performed.

API for KPIs The KPI APIs were tested in terms
of response time, data volume load
tests and concurrency load tests
and fulfill the acceptance criteria.

On the other hand, some functional
tests were performed to get
electricity consumption, production
and mobility routes. All the outputs
were verified and comply with
validation and source consistency
requirements.

These APIs are used by the vertical
applications to retrieve aggregated and
processed data.

Time responses assure that data is retrieved
at reasonable intervals, creating a good user
experience in data monitoring in the final
application.

Services for
Integrating
Open Data

The services for integration open
data were tested in terms of
response time, data volume load
tests and concurrency load tests
and fulfill the acceptance criteria.

Some functional tests were
performed to get electricity prices
and CO2 emission levels. All the
outputs were verified and comply
with validation and source
consistency requirements.

These services are used by the vertical
applications to process or complete sensor
data with additional information, such as
energy prices and sustainability indicators.

Time responses achieved, like those
obtained in the API for KPIs, assure that
open data and the KPIs are in synch and
refreshed at reasonable time intervals.

Table 31 Unit tests summary report

7.2 Integration Tests

The table below provides the test summary report for the integration tests deployed in

section 6.2¡Error! No se encuentra el origen de la referencia..

Test Summary Report

Integration
Test Name

Qualitative
Assessment

Correction measures

Energy
Efficiency Test
Scenario

All API tests passed
in terms of
performance and

CIOP in Vitoria-Gasteiz lighthouse is based on Azure
technologies. Concerning the API testing, the services that
extract temperature and consumption sensor data and
render this data into an energy application were leveraged.

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 124 / 128

functionality.

The GUIs tests
offered an average
user experience.

In this sense, specific sensor values were tracked from the
data acquisition source. This sensor data is stored in the
Realtime Repo. From here, an ETL process regularly
dumps the content of the Realtime Repo into a distributed
database (Historical Repo). In parallel, another ETL
process aggregates the real-time data and stores the mean
values into the Energy Vertical Repo. On the other hand,
the ETL Structural Repo associates the Energy Vertical
Repo sensor measurements with the associated dwelling,
building and GIS Repo identifier. Furthermore, the GIS
Structural Repo Service links the Structural Repo data with
cartographic and building information, such as the address,
zip code, house number, etc. Finally, the API for Energy
Services and the GIS Repo Service provide a service
façade for the Energy Application to render the data.
Summarizing, the tracking of the sensor data from the
physical devices through the structural and GIS processes,
and its logical representation in the Energy Application was
tested. As a result, data consistency was validated.

The test demonstrates the integration and correct flow of
data between the modules used for the execution of this
test. Nevertheless, errors and atypical data have been
identified during the implementation of the integration test.
Errors in aggregated data have been identified during the
testing process. These errors are at different levels in
timestamp and element.

Regarding the GUI testing and assessment, sensor input
data changes were promptly managed by the Energy
Application, leading to a smooth web user experience.
However, this test scenario shown issues with the legibility
of the pop up reports in the main screen and in the
rendering of the report visual elements, such as the
widgets for selecting the Building ID and the address.

District Heating
(Fortum)

As the purpose of
integration testing is
to validate that
individual software
modules work as a
complete system and
at this time Tartu’s
software and
hardware vendors
have not been
selected – we can
only present a
sample scenario in
this section.

Tartus’ base technology for CIOP is Cumulocity. This
commercial product provides most of the necessary testing
and monitoring capabilities to all of the hardware and
software modules that are connected from sensing and/or
Intelligent Service layers – e.g. providing continuous point-
to-point testing, which limits the need for system wide
integration testing. In Cumulocity it is important just once to
set correct settings of how frequent check should be
performed and testing and monitoring will be executed
automatically.

Electricity
Production from
Solar Panels

All tests passed in
terms of performance
and functionality.

Sønderborg CIOP solution is based on VMS commercial
platform. After setting correctly configuration parameters of
connected hardware, the monitoring capabilities and
logging information is available which allows to check
overall system performance at any given time.

Data acquisition from connected dataloggers by Gateway
was tested resulting in no unexpected performance. The
publishing and storing of collected data from Gateway to

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 125 / 128

database(s) were tested which performed as expected. The
presentation (plain table and charts) to end user was
generated from the collected data resulting in good user
experience.

No correction measures were required.

Table 32 Integration tests summary report

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 126 / 128

8 Conclusions, deviations and outputs for other WPs

Deliverable D6.7 presents the results of integration and validation of the different modules of

the ICT platform developed in the previous task of WP6.

The V-test model is the reference approach chosen for testing and validation of the CIOP

platform. This model is taken as a reference base for testing and quality assurance of

software development. The model consists of several steps and tests of which the most

representative ones for the type of development carried out in WP6 have been selected.

Several standards, tools and templates have been defined and are available for the

implementation of the selected approach for the SmartEnCity project.

The adaptation of the selected methodology to the SmartEnCity project considers three types

of relevant tests: unit tests, integration test and monitoring test. The first ones are made for

each of the modules that make up the software platform separately during the software

development phase. The integration tests represent the test of the functionalities of the

system and the connection between modules in an integrated manner. The monitoring tests

contemplate those aspects to be considered during the operation of the platform that allow

controlling the correct operation beyond the development phase. In addition, the components

of the platform are heterogeneous in type and form (e.g. repository, process, or service), and

each one requires a test plan, although for all of them two basic test types have been

defined: Performance test and Functional test. The reference templates have been adapted

to the characteristics of the developed ICT platform. The adaptation of the methodology also

includes the processes and templates for testing the added-value services identified to be

developed in each of the project lighthouses.

The integration of the results of the different demonstrators to be developed in the

lighthouses and followers of the project will be carried out through a global access portal that

controls the access to the users of the platform and facilitates the visualization and

comparison of indicators of the different cities. This system will facilitate also the monitoring

of the platform operation once deployed.

Unitary tests have been carried out for some examples of modules or end-points developed

in the previous activities of WP6. These end-points represent a representative sample of the

modules that make up a SmartEnCity platform. The identified modules are of heterogeneous

types and belong to one of the layers of the reference architecture defined for the

SmartEnCity project. The sample collects modules of all layers and represents different

verticals of application. The results of these validations test the correct functioning and

development of the identified modules and set the basis for the testing of new modules to be

developed in the project based on the defined reference architecture.

The defined integration tests are complementary in scope, city of reference and base

platform. All of them are based on the reference architecture and the layers and modules

described in that reference. The integration tests show the integrated functioning of the

developed modules and the correct flow of data through prototype applications that include

from the capture of information to the presentation of information to the user in a final

application.

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 127 / 128

Concerning the acquisition of data from the physical energy sensors, mobility sensors and

citizen mobile devices, the unit test summary reports show conclusively that the performance

in terms of time response, data volume and concurrency comply with the acceptance criteria

defined. On the other hand, the functional tests in data acquisition showed a consistent data

output for sensor activation and data provisioning.

In regard to the ETL processes involving data transformation between databases, the test

scripts demonstrated that performance falls within the acceptance criteria limits defined. In

terms of data transformation correctness, the test validated the data consistency comparing

the output data with the data sources.

The API Services, which leverage the acquisition and data transformation (e.g. aggregation,

GIS and structural linkage) were also tested from the performance and functional

perspective. These API tests proved high service throughput, data consistency and no

scalability problems are foreseen when the number of users increase in production stage.

Three integration scenarios, complementary with regard to SmartEnCity domain and

lighthouse implementation, and including some of the end-points mentioned above, were

deployed and tested following the integration test requirements. In conclusion, all data

acquisition, ETL and database API tests passed in terms of performance and functionality

and the GUIs tests offered an average user experience concerning usability, look and feel,

smoothness and data flow.

No deviations have been produced according to the dates and content of the deliverable with

respect to the proposed plan.

The outputs produced in this deliverable will have effects on activities related with the

deployment, integration and validation of the CIOP platform in the three lighthouse cities

(Vitoria-Gasteiz WP3, Tartu WP4 and Sonderborg WP5).

D6.7 – Integration and Validation report

SmartEnCity - GA No. 691883 128 / 128

9 References

SmartEnCityD6.1. (2016). SmartEnCity Deliverable 6.1: CIOP Functional and Non-Functional

Specifications.

SmartEnCityD6.2. (2017). SmartEnCity D6.2 "CIOP architecture generic implementation".

SmartEnCity D6.3 (2017). SmartEnCity D6.3. "Data Model Architecture Implementation".

SmartEnCity D6.4 (2017). SmartEnCity D6.4. "Interoperability mechanisms Implementation".

SmartEnCity D6.5 (2017). SmartEnCity D6.5. "Design guide and tool catalogue".

SmartEnCity D6.6 (2017). SmartEnCity D6.6. "Strategies for added-value services and tool

catalogue".

